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ABSTRACT
Despite the fast advances in high-sigma yield analysis with the help
of machine learning techniques in the past decade, one of the main
challenges, the curse of “dimensionality”, which is inevitable when
dealing with modern large-scale circuits, remains unsolved. To re-
solve this challenge, we propose an absolute shrinkage deep kernel
learning, ASDK, which automatically identifies the dominant pro-
cess variation parameters in a nonlinear-correlated deep kernel and
acts as a surrogate model to emulate the expensive SPICE simula-
tion. To further improve the yield estimation efficiency, we propose
a novel maximization of approximated entropy reduction for an
efficient model update, which is also enhanced with parallel batch
sampling for parallel computing, making it ready for practical de-
ployment. Experiments on SRAM column circuits demonstrate the
superiority of ASDK over the state-of-the-art (SOTA) approaches
in terms of accuracy and efficiency with up to 11.1x speedup over
SOTA methods.
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1 INTRODUCTION
As semiconductor fabrication technology improves by shrinking
down its scale to nano-meter, the negative effect of the process
variance, e.g., doping fluctuation, intra-die mismatches, and thresh-
old voltage variation, arises and causes yield reduction. For cir-
cuits with cells replicated millions of times (e.g., SRAM), extremely
small circuit failure probability (usually smaller than 10−6) must be
∗Both authors contributed equally to this research.
†Corresponding author.
‡Also affiliated with BeihangHangzhou Innovation Institute Yuhang, Hangzhou, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567907

considered to provide a robust design against fabrication process
variations, which forms the yield analysis problem.

Monte Carlo (MC) analysis is generally considered the gold stan-
dard for yield analysis in industry and academia. To provide a
reasonably accurate yield estimation, MC requires a large number
(usually millions) of SPICE simulations, making it infeasible for
modern yield problems, e.g., yield estimation for SRAM array with
more than 500 independent process variation parameters. Taking a
32M SRAM with a 97% yield rate for an example, the yield of the bit
cells needs to exceed 99.9999%[1]. Using MC, more than 1× 106 MC
samples are required to ensure accuracy. Therefore, academia and
industry rely on other approximated yield estimation algorithms
to reduce the overall time cost of the repeated simulations.

Instead of drawing samples randomly as in MC, Importance sam-
pling (IS) based approaches draw samples according to a constructed
distribution shifted to the likely-to-fail regions. For example, [2]
shifts the sampling mean to the min-norm points of each failure
region. [3] utilizes an adaptive resampling scheme to keep the sam-
ple mean updated. [4] combines variance reduction techniques
with importance sampling and gate delay model. The convergence
of probability estimation can be accelerated because the failure
event is more likely to be drawn around the likely-to-fail regions.
However, These IS-based methods can only find the nearest failure
region, whereas the other failure regions are ignored, leading to
low efficiency or even low accuracy when the number of samples is
not sufficiently large. Surrogate-modeling-based methods construct
a surrogate model to approximate the circuit simulators, based on
which the yield is estimated. For example, [5] evaluates the circuit
through a Gaussian process regression model, whereas [6] utilizes
a polynomial chaos expansion model with low-rank tensor approx-
imation to emulate the system performance function. To further
improve a surrogate model’s efficiency, the training data is added
sequentially based on the current estimations [6] rather than just
relying on pre-sampling inputs.

It is also possible to combine the IS- and surrogate-based ap-
proaches. [5] uses an RBF neural network to fit the simulation
results with an optimal-mean-shift-vector and proposes a heuristic
algorithm to find candidates to conduct subsequent experiments.
However, high-dimensional yield estimation is still a challenge for
both industry and academia. For the surrogate-based method, the
data-driven surrogate model (being Gaussian process or deep learn-
ing) does not scale well with the dimensionality of the input space
due to the “curse of dimensionality” where the number of train-
ing data to cover the domain grows exponentially. Similarly, the
IS-based method requires a large number of simulations to obtain
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the likely-to-fail region, which suffers the same exponential growth
with the increase of dimension.

To tackle the high-dimensional yield estimation challenge, We
propose a novel deep kernel learning surrogate model with non-
linear feature selection to capture the black box function between
input and output; a parallel sampling scheme is also proposed to
update the model efficiently. The novelty of our work includes: (1)
We propose shrinkage deep features to enable the widely used GP
surrogate for high-dimensional process variation inputs. Specifi-
cally, we introduce an absolute shrinkage in the reproducing kernel
Hilbert Space (RKHS) via the Hilbert-Schmidt independence crite-
rion (HSIC) to select the key features that dominate the input-output
mapping, making a GP easier to train, robust against overfitting,
and efficient to update with any acquisition functions. (2) We har-
ness the rich model capacity of a deep kernel learning Gaussian
process as our surrogate model to capture the complex black-box
function of the process variation parameters and their circuit perfor-
mance metric under a SPICE simulator. (3) We proposed a scalable
parallel batch strategy to enable massive parallel model updates,
which takes advantage of the high dimensionality and turns the
“curse of dimensionality” into a “blessing of dimensionality”. (4) The
empirical study shows that ASDK is up to 11.1x faster and more
accurate than the SOTA methods.

2 BACKGROUND
2.1 Problem Definition: Rare Event Analysis
Define x = [𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝑑 ) ]𝑇 ∈ 𝑋 as the variational parame-
ters, which explains the inevitable random variations of a manu-
facturing process when conducting a SPICE simulation with given
design parameters, e.g., transistor widths and lengths, resistance
values, capacitance values, and bias voltages and currents. Without
loss of generality, x is assumed independent Gaussian distributed
after normalization, i.e.,

𝑝 (x) =
𝑑∏
𝑖

exp
(
−(𝑥 (𝑖 ) )2/2

)
/
√

2𝜋. (1)

For a particular x (bare in mind that we cannot control the value of
x), the circuit performance metric 𝑧𝑘 , e.g., amplifier gain and mem-
ory read/write time, can be considered as a function 𝑧𝑘 = 𝑓𝑘 (x).
When all 𝐾 metrics are smaller/larger than some predefined thresh-
old z0, e.g., 𝑧𝑘 ≤ 𝑧0

𝑘
for 𝑘 = 1, · · · , 𝐾 , the circuit with the corre-

sponding parameters x is considered a qualified design. Otherwise,
it is a failure case. Let’s use a compact notation z = f (x) to de-
notes the process, where f includes all SPICE simulations and other
necessary calculations. Putting this into a strict formulation, for a
specific design circuit, the circuit failure probability (equivalently
the yield rate) 𝑃𝑓 is defined as

𝑃𝑓 ≜

∫
X
𝐼 (f (x))𝑝 (x)𝑑x, (2)

where 𝐼 : R𝑘 → {0, 1} is the indicator function of whether a
performance metric passes the predefined criteria. The integration
is challenging as it does not admit a closed-form solution in general.
In practice, we can generate 𝑁 samples from 𝑝 (x) and approximate
𝑃𝑓 by 𝑃𝑓 ≈ 1

𝑁

∑𝑁
𝑖=1 𝐼 (f (x𝑖 )), which become exact when 𝑁 → ∞.

Nevertheless, the computation of 𝑃𝑓 is highly time-consuming as

the number of simulations 𝑁 required to finish the integral is large
particular for large 𝑑 , where each simulation can take hours to
finish.

2.2 Surrogate Model
To avoid frequent calls to the expensive SPICE simulators and pos-
sibly other calculations, we can use a data-driven surrogate model
g(x) to approximate f (x) and use it to provide a quick estimation
for any x ∈ X. There are many choices for the surrogate model
for the applications, such as RBF neural networks [5], polynomial
chaos expansion [6], and Gaussian process [5]. The different meth-
ods have their own unique characteristics for specific scenarios.
In general, with a surrogate model, we can approximate the yield
using 𝑃𝑓 = 1

𝑁

∑𝑁
𝑖=1 𝐼 (g(𝑥𝑖 )), where x𝑖 can be obtained cheaply by

sampling from the process variation distribution 𝑝 (x). The com-
putation is fast because executing g(𝑥𝑖 ) is computationally cheap
once trained. Note that g(x) is a approximation of f (x). Thus, 𝑃𝑓
is an approximation of 𝑃𝑓 . The accuracy of 𝑃𝑓 depends on the
g(x), which relies on the collected training dataset 𝐷 . Certainly,
we can use the design of experiment (DoE) to generate training
inputs using Latin hypercube sampling (LHS) or Sobol sequence.
However, this can be of low efficiency, particularly for the yield
problem where only a few critical regions matters. Instead, we can
use a sequential update scheme to update the surrogate model such
that the surrogate always gets the best update in terms of reducing
its error and uncertainty of 𝑃𝑓 . This is in line with the theory of
Bayesian optimization (BO), where to goal is to approach the global
optimal by proposing a sequence of query points. Following BO, we
call the function measuring the contribution of a candidate point
x an acquisition function (Acq). The sequential model updating
can be formulated, x∗ = argmax𝑥∈X Acq(x |𝐷), where x∗ indicates
the best candidates for the currently available data 𝐷 , which is
then updated using x∗ and its corresponding performance metric.
Thanks to the acquisition function, we can find the failure region
more efficiently without wasting our simulation in unnecessary
regions, resulting in a speedup in estimating the yield.

3 RESEARCH METHODS
In this section, we present ASDK based on the deep kernel learning
Gaussian process, feature selection, adaptive updating, and paral-
lel acceleration for the yield estimation. The code is available on
Github1.

3.1 Deep kernel Learning Gaussian process
Gaussian process (GP) is a common choice as the surrogate model
for design space exploration tasks due to its model accuracy and
flexibility with uncertainty quantification. By giving the set of
the process variation parameters and their circuit performance
metric under the SPICE simulation, we aim to capture the black-
box function of the process variational parameters and their circuit
performance metric.

Suppose that we have a set of 𝑁 yield observations {𝑦𝑖 = 𝑓 (x𝑖 ) +
𝜖𝑖 }𝑁𝑖=1, where the noise 𝜖 is caused by the numerical error of a simu-
lator and is assumed normally distributed. AGPmodel places a prior

1https://github.com/SawyDust1228/HSIC-DKL-Yield-Estimation
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distribution over the function 𝑓 as 𝑓 (x) |\ ∼ GP(` (x), 𝑘 (x, x′ |𝜽 )),
where ` is the mean function, and the kernel function 𝑘 is pa-
rameterized by 𝜽 . Usually, the mean function can be assumed
zero, i.e., ` (x) ≡ 0, by centering the data. The kernel function
can take many forms, the standard RBF kernel are as 𝑘 (x, x′ |\\\ ) =
\0 exp(−(x − x′)𝑇 diag(\1, . . . , \𝑙 ) (x − x′)). With this prior and
available data y = (𝑦1, . . . , 𝑦𝑁 )𝑇 , we can derive the model likeli-
hood

𝐿 = −1
2
y𝑇 (K + 𝜎2I)−1y − 1

2
ln |K + 𝜎2I| − 𝑁

2
log(2𝜋), (3)

where K = [𝐾𝑖 𝑗 ] represent the covariance matrix, in which 𝐾𝑖 𝑗 =
𝑘 (x𝑖 , x 𝑗 ), 𝑖, 𝑗 = 1, . . . , 𝑁 , and 𝜎2 denotes the variance of the noise 𝜖 .
The hyperparameters \\\ are normally obtained from point estimates
by maximum likelihood estimate (MLE) w.r.t. 𝜽 .

Recently, deep neural networks have achieved great success in
many areas because of their remarkable capacity for feature ex-
traction. [7] combines the non-parametric flexibility of a kernel
function with the powerful model capacity of the deep neural net-
works, which significantly improves the performance of a general
GP. Despite its success, the underlying ideas are rather simple. It
essentially redefines the kernel as

𝑘 (x, x′) = 𝑘 (𝜙 (x,w), 𝜙 (x′,w)), (4)

where 𝜙 (x,𝑤) is a deep neural network (for instance, a multi-layer
perception (MLP) with multiple hidden layers) parameterized by
weights w and 𝑘 (·, ·) is any valid kernel function, e.g., RBF kernel.

3.2 Shrinkage Deep Feature Selection
In general, the process variation parameters quantify the process
corner and other factors during the fabrication of a circuit, e.g.,
threshold voltage, channel length modulation effect, and bulk effect.
Usually, the same type of variational variables is applied to each
transistor (and/or other crucial elements in the circuit). Due to the
large number of transistors a practical circuit can have, we will
end up with a large number of variational parameters, e.g., 1000,
causing the “curse of dimensionality” issue, which makes both the
integration and surrogate fitting extremely challenging.

Fortunately, previous research [8] reveals that not all variational
parameters are equally important. In fact, circuit performance is
dominated by several critical transistors, whereas the other transis-
tors have little influence, especially in the case where the circuit
has a special symmetric design to alleviate the process variation.
This finding makes “dimension reduction” possible to reduce the
input dimension such that only the key parameters are preserved.
Note that this is more of a “feature selection” rather than dimen-
sion reduction because the inputs are fully independent, indicating
that no dimension reduction techniques, e.g., PCA and KPCA, can
achieve any success.

Let {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖=1 denotes the collection of all variation parameters
and corresponding performance metric 𝑦 ∈ R𝐷 . The surrogate
model aims to approximate f (x) with a small 𝑁 and a large 𝐷 ,
which can easily lead to overfitting. As mentioned above, only a
few variation parameters matter the most. We consider the clas-
sic feature selection method, least absolute shrinkage selection
operator (LASSO) [9], which chooses the key feature that best ex-
plains the input-output relationship. Essentially, LASSO casts an

optimization problem,

argmin
𝛼

1
2
| |y − X𝜶 | |2 + _ | |𝜶 | |1, (5)

where 𝜶 ∈ R𝐷 is a weight vector determining the contribution of
each dimension of x, _ is the penalty factor; | | · | |2 denotes the L2
norm and | | · | |1 the L1 norm. This formulation is effective because
its gradient w.r.t 𝛼 (𝑖 ) (which is the i-th element of 𝜶 ) is a constant,
which will push the value of 𝛼 (𝑖 ) towards zero unless it contributes
significantly to reducing the data fitting loss of the first term.

Despite its elegance and effectiveness, we can immediately tell
the limitation of LASSO is that it is based on a linear model, whereas
the yield analysis problem we are facing is usually nonlinear. An
ordinary LASSO will ignore the nonlinear connections and only
focus on the linear ones, leading to a poor feature selection. Since
a GP essentially relies on the reproducing kernel Hilbert space
(RKHS) to build the connection between the input and output, we
can naturally extend the original LASSO for the RKHS, which leads
us to the Hilbert-Schmidt independence criterion (HSIC) proposed
by [10]. Specifically, we require the output correlation measured by
the kernel function 𝑘 (·, ·) can be captured via the sum (with weight
factor 𝛼) of the correlation matrix of each input dimension. The
weight factor 𝛼 is then contrasted using the LASSO trick. For a more
rigorous derivation, the readers are referred to [10]. In practice, we
also apply double centering for the kernel matrix to ensure stability
and solve the optimization problem:

argmin
𝛼

1
2
| |L̃ −

𝐷∑︁
𝑑=1

K(𝑑 )𝛼 (𝑑 ) | |2 + _ | |𝜶 | |1 (6)

where L̃ = HK𝑦H𝑇 , with H = I− 1
𝑁
11𝑇 being the centering matrix;

[K𝑦]𝑖 𝑗 = 𝑘 (y𝑖 , y 𝑗 ) and [K(𝑑 ) ]𝑖 𝑗 = 𝑘 (x (𝑑 )
𝑖
, x (𝑑 )
𝑗

) are kernel matrix
given the target values and d-dimension of x; 𝑘 (·, ·) is the kernel
function with default hyper-parameters. The key result of this
algorithm is the weight vector 𝜶 , which indicates the importance
of each input dimension that dominates the input-output mapping
in the RKHS, which is encoded in our GP.

3.3 Maximum Integral Entropy Reduction
In Bayesian Optimization, the acquisition usually uses expected
improvement (EI), predictive improvement (PI), and upper confi-
dence bound (UCB) to propose a candidate for the next iteration.
However, they are designed for optimization and do not generalize
to yield estimation directly.

We notice that the circuit yield is usually very high (equivalently,
the failure rate is very low), which means that the passing threshold
z0 is an extreme value compared to most simulation performances,
and only a few samples will eventually fail the indication function.
This hints that we can reduce the computing cost of integral by
avoiding observation in the region that the simulation performance
𝑧 will "absolutely" pass the criterion and try to locate the boundary
of the failure region. This search scheme is in line with the boundary
search method.

Considering a GP f (x) = [𝑓0 (x), 𝑓1 (x) . . . 𝑓𝐾 (x)]𝑇 , the posterior
of each 𝑓𝑖 (x) ∼ GP(𝑚𝑖 (x), 𝑘𝑖 (x, x′)) is also a gaussian distribution
with mean `𝑖 (x) and variance 𝑣𝑖 (x). The predictive posterior based
on the pass threshold z0 is a Bernoulli distribution with likelihood
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𝑙 (x) ≜ 𝑝 (�̃� (x) = 1), where �̃� (x) = 𝐼 (f (x)) indicates the predictive
performance,

𝑙 (x) =
𝐾∏
𝑘=1

𝑝

(
𝑓𝑘 (x) ≥ 𝑧𝑘

)
=

𝐾∏
𝑘=1

Φ(
`𝑘 (x) − 𝑧0

𝑘

𝑣𝑘 (x)
), (7)

where Φ(·) is the cumulative density function (CDF) of a normal
distribution. According to the Poisson binomial distribution, which
is the sum of independent yes/no experiments. We derive the ap-
proximated integral 𝑔 in a similar manner,

E
[
𝑃𝑓

]
=

∫
X
𝑙 (x)𝑝 (x)𝑑x,

Var
[
𝑃𝑓

]
=

∫
X
𝑙 (x) (1 − 𝑙 (x)) 𝑝 (x)𝑑x .

(8)

Because 𝑙 (x) is tractable, and 𝑝 (x) is simply a diagonal Gaussian,
we can compute the integral efficiently using numerical approxi-
mations or quasi-MC. Achieving an accurate yield estimation 𝑃𝑓
is equivalent to reducing its variance Var

[
𝑃𝑓

]
, which, however,

ignores the high-order moment and can lead to inferior results.
Instead of reducing the variance, we introduce a probability infor-
mation entropy for the yield posterior of 𝐼 (x), which is the entropy
of a Bernoulli distribution,

𝐻 (x) = −𝑙 (x) log (𝑙 (x)) − (1 − 𝑙 (x)) log (1 − 𝑙 (x)) . (9)

We then define the total integral entropy as

𝐼𝐻 =

∫
X
𝐻 (x)𝑝 (x)𝑑x, (10)

which indicates the uncertainty of 𝑔(x) based on the surrogate
model with current observations 𝐷 . To reduce the uncertainty of
𝑃𝑓 , we can propose a candidate base on maximizing the expected
integral entropy reduction,

x∗ = argmax
x∈X

(𝐼𝐻 (D) − 𝐼𝐻 (D ∪ x))

= argmin
x∈X

𝐼𝐻 (D ∪ x). (11)

Thus, to get the optimal x∗, we first draw multiple samples from
the predictive posterior 𝑓𝑘 (x |D) for a possible observation perfor-
mance metric z(𝑘 ) . We then combine those samples with our data
collectionD and update the posterior as 𝑓𝑘 (x |D∪{x, z(𝑘 ) }), based
on which, we can compute the integral entropy 𝐼𝐻 (D ∪ x).

3.4 Parallel Batch Acquisition
In practical yield applications, it is important to allow a parallel
acquisition of multiple candidates to unleash the power of the mod-
ern cluster center. In a recent work [6], the authors use a mixed
Gaussian distribution to implement a parallel updating scheme.
More specifically, they generate a discrete Gaussian sampling dis-
tribution around each observed data and use it to sample new
candidates. However, these new candidates may fall in the same
region with a high probability in the input domain, leading to an
inefficient sampling strategy. In this section, we generalize ASDK
for parallel computing. More specifically, we would like to propose
multiple candidates at each iteration. Formally, we aim to solve the
optimization,

X∗ = argmin
X∈X

𝐼𝐻 (D ∪ x1 ∪ · · · ,∪x𝑄 ), (12)

where X∗ indicates the collection of 𝑄 ideal query points. As dis-
cussed previously, directly solving this equation is challenging and
computationally expensive. To approximately solve this optimiza-
tion in a batch fashion, we take advantage of the “curse of dimen-
sionality” and turn it into a blessing. More specifically, we discover
that if we start the ASDK at multiple far-away initial locations, the
final query points do not converge to the same locations due to
the complex geometry in the high-dimensional space. Inspired by
the Q-batch initialization [11], we convert finding multiple query
points into finding multiple far-way initial points for optimization.

Assume that we aim to generate 𝑄 query points. We first pre-
sample 𝑇 points in the domain, where we ensure 𝑇 >> 𝑄 . We then
compute these 𝑇 points’ acquisition score s, {𝑠𝑖 = 𝐼𝐻 (D ∪ x𝑖 )}𝑇𝑖=1 .
Let 𝑠𝑚 be the max value in these 𝑇 scores. Define 𝛾 as a fraction
of the maximum observed value under which we will ignore. This
coefficient helps us filter out the scores that are lower than 𝛾 ∗ 𝑠𝑚 .
In cases where the number of satisfying candidates is smaller than
the query number 𝑄 , we use the following equation to relax the
threshold 𝛾 = (1 − 𝛽)𝛾0, where 𝛽 is another hyperparameter to
relax the filter and 𝛾0 is the ratio that does not satisfy the need. We
can repeat this process until we get more than 𝑂 points (𝑂 > 𝑄)
over the threshold. This idea is similar to the two-stage estimation
in [12]. After we get 𝑂 samples {𝑠𝑖 }𝑂𝑖=1 that are larger than the
threshold, we use the following equation to get the sample weights:

𝜔𝑖 = 𝑒𝑥𝑝 ([1
𝑠𝑖

𝑠𝑚
), (13)

where [1 is a scaling factor. Based on the weight 𝜔 , we sample 𝑄
initial points sequentially from the 𝐾 points set.

We then conduct maximum entropy reduction in Eq. (11) in
parallel with the𝑄 initial points with gradient descent, e.g., SGD or
Adam. A summary of our parallel batch query scheme is presented
in Algorithm 1.

Algorithm 1 ASDK Parallel Batch query Algorithm
Input: number of initial set 𝑇 , number of candidate 𝑄 , number of

filtered samples 𝑂 , fraction coefficient 𝛾 , relax coefficient 𝛽 ,
weight sample coefficient [1.

1: Randomly generate 𝑇 points in the domain using the Sobel
sequence and compute the scores for these points.

2: Assign the threshold 𝛼𝑠𝑚𝑎𝑥 and get 𝑂 candidate points.
3: Sequentially sample Q points with weight 𝜔𝑖 = exp([1

𝑠𝑖
𝑠𝑚

)
4: Conduct maximum entropy reduction in Eq. (11) in parallel

with the 𝑄 initial points to get 𝑄 optimal solutions X∗

5: return Best candidates X∗

4 EXPERIMENT RESULTS
In this section, we assess ASDK with the SOTA yield estimation
algorithms on commonly used high-dimensional benchmark cir-
cuits. We compare ASDK to the SOTA yield estimation algorithms,
including: (1) LRTA [6], a high-dimensional yield estimation algo-
rithm using the low-rank tensor approximate polynomial chaos
expansion model as the surrogate model with a KDE-based adaptive
sampling strategy to update the model, (2) HDBO [13], which uses
a random embedding feature reduction method and a Bayesian
optimization to find the failure event, (3) HSCS [2], which applies a
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Figure 1: The schematic of 6T-SRAM cell (left) and SRAM
array column (right)

clustering algorithm to identify multiple failure regions and uses
min-norm-points to resample the failure region. Bayesian-based
approaches like HDBO and ASDK are implemented with parallel
computing. All experiments are performed on a Linux system with
AMD 5950x, GTX 3080, and 32GB RAM.

To determine when to stop the yield estimation process, we
follow the widely used Figure of Merit (FOM) 𝜌 in the yield estima-
tion literature [2, 3, 6] as the stopping criteria. FOM is defined by
𝜌 = 𝜎𝑃𝑓 /𝑃𝑓 , where 𝑃𝑓 denotes the mean failure probability estima-
tion and 𝜎𝑃𝑓 the standard deviation of 𝑃𝑓 . Following the literature,
we set the threshold 𝜌0 = 0.1, i.e., stopping the yield estimation
process when 𝜌 < 0.1. This is equivalent to the stopping criteria of
convergence with 90% confidence interval[2].

Without loss of generality, we test one circuit metric for each
experiment, i.e., z0 ∈ R. We can implement high dimensional circuit
metric by changing our GP model to a multi-task GP [14] or just
fitting each metric independently. For the experimental purpose,
we set the threshold to fix the yield failure rate to be approximately
10−4 to reduce overall computation and to emphasize the search
of multiple failure regions in the process variational space. The
hyperparameters we mention in this section 3.4 is set as following,
𝛼 = 0.3, 𝛽 = 0.9, 𝑇 = 100 × 𝑁 , [1 = 0.5. As for the deep kernel
network, we use a three-layer MLP when the dimensionality is
smaller than 128 and a four-layer MLP for other cases. The pro-
posed method can be applied to general scenarios by changing the
structure of the neural networks.

4.1 18 Dimensional 6T SRAM Bit Cell
The 6T SRAM bit cell is a basic storage unit of SRAM circuits, which
consists of six transistors shown in Fig. 1. In the circuit design, M1,
M3, M5, and M6 are NMOS transistors, whereas M2 and M4 are
PMOS transistors, BL is the bit line, and WL is the word line. The
state of each bit in the SRAM is stored in two cross-connected
inverters composed of M1, M2, M3, and M4. M5 and M6 NMOS are
control switches used to control data transmission from the storage
unit to the in-place line.

We consider the delay of read/write as the circuit output metric
for this experiment, which is a commonly used setup for yield es-
timation research [3, 6, 15]. In the setting of this experiment, our
deep kernel learning uses a three layers MLP with 200, 100, and 10
hidden neurons and ReLu as the activation function between each
layer. We use a Matern plus a linear kernel for the GP to keep flexi-
bility and efficiency. Fig. 2 shows the detailed estimation process
whereas Table 1 concludes the experimental results. It can be seen
clearly from the table that ASDK outperforms the competitors with
a large margin in terms of estimation accuracy and the number of
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Figure 2: 𝑃𝑓 and FOM on 18-dimensional 6T SRAM

simulations required to achieve convergence, rendering a 196.30x
speedup compared to standard MC and an up to 6x speedup to the
competitors. The proposed method is the most accurate with only
4.14% relative error w.r.t. the golden truth MC value among the
baseline methods. The MC method reaches the stopping criteria
after 265000 simulations. HSCS, HDBO, and LRTA converge with
8100, 3500, and 2200 simulations, respectively. The failure rate of
the IS-based HSCS remains small in the beginning, and a increase
in the failure rate will emerge when HSCS discovers correct failure
regions. The poor efficiency of HSCS is not a surprise, because an
IS-based approach needs a massive number of pre-sampling data
to cover the failure regions. HDBO, LRTA, and the proposed ASDK
exhibit relatively fast convergence with a 75.71x, a 120.45x and a
196.30x speedup because they use surrogates. Nevertheless, ASDK
converge to the most accurate fail rate using merely 1350 simu-
lations. The evolution trend of the yield for surrogate methods is
determined by the initial sampling technique and the regression
model. Due to the different initial fitting techniques to the varia-
tion parameter space, the initial failure rates of different surrogate
approaches vary. With the surrogates being updated, the fail rates
of LRAT and ASDK grow larger gradually, whereas that of HDBO
grows smaller. Nevertheless, they all converge to the ground truth
with enough simulation runs.

The time consumed in model training (the time spent in sim-
ulation run is not included) during the whole yield estimation
process of each approach is shown in Table 1. MC needs no train-
ing. IS-based HSCS spends only 5.28s on training. Surrogate-based
methods like HDBO, LRTA, and ASDK require more time in model
training. Among them, HDBO and ASDK obviously need more time
to train because their Bayesian optimization is time-consuming.
The proposed ASDK require the most time to train in this case. How-
ever, the train time of the model can be ignored when compared
with the time of the simulations.

4.2 569 Dimensional SRAM Column
Fig. 1 shows the simplified circuit diagram of the 6T-SRAM bit cell
array. Similarly, we use the delay of read/write as the metric. We
increase the dimensionality with more cells, which leads to 569
process variation parameters. When the dimension get large, we
need to increase our deep network’s capacity to deal with the more
complex data structure. To this end, we use an MLP with 1000,
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Table 1: Final 𝑃𝑓 estimation on 18-dimensional 6T SRAM

MC HSCS HDBO LRTA Proposed

Failure prob. 4.83e-4 5.15e-4 6.25e-4 6.40e-4 4.60e-4
Relative error Golden 6.62% 29.40% 19.46% 4.14%

# of Sim. 265000 8100 3500 2200 1350
Sim. speedup 1x 32.72x 75.71x 120.45x 196.30x
Training time N/A 5.28s 401.62s 53.50s 1537.73s

Table 2: Final 𝑃𝑓 on 569-dimensional SRAM column

MC HSCS HDBO LRTA Proposed

Failure prob. 4.70e-4 5.82e-4 3.87e-4 5.60e-4 4.39e-4
Relative error Golden 23.83% 17.66% 19.14% 6.60%

# of Sim 928500 44400 6100 5400 4000
Sim. speedup 1x 20.91x 152.21x 171.94x 232.13x
Training time N/A 112.53s 1001.73s 12403.21s 5546.56s
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Figure 3: 𝑃𝑓 and FOM on 569-dimensional SRAM column

500, 200, and 20 hidden units with the hyperparameters remaining
unchanged. The number of selected features is set at 120.

The same experimental results are shown in Fig. 3 and Table 2.
The fail rate of HSCS remains very low until it finds failure regions
near the origin of the coordinates of the variational parameter space.
Therefore, the first half of its 𝑃𝑓 curve is unable to be plotted in the
figures. Surrogate-based methods like HDBO, LRTA, and ASDK
converge to the ground truth gradually. We can see that ASDK
again achieves the lowest relative error among all methods with
the minimum number of simulation runs, rendering its superiority
over the SOTA methods. Particularly, compared with the second
best method, LRTA, ASDK is 2.9x more accurate and 1.3x faster.
The improvement over HSCS is about 11.1x faster with a 3.6x
improvement in accuracy. As for the training time, LRTA requires
12403s, which makes it the lowest efficient method in this case
due to the exponential growth of complexity w.r.t. dimensionality.
Notice that ASDK also requires quite a significant training time.
However, we believe that this computational cost is weightless than
the simulation runs.
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Figure 4: 𝑃𝑓 estimation with different batch size
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Figure 5: Acquisition function experiment

4.3 Ablation Study
Parallel Batch Update Convergence Validation. To assess the
proposed parallel batch update method, we conducted the parallel
experiment on both previous experiments with different batch sizes,
i.e., {20,50,100} and show the yield in Fig. 4.We can see that a parallel
run with 100 simultaneous candidates is almost as good as with 20,
indicating the scalability of the proposed batch method.
Maximum Integral Entropy Infill Validation. To demonstrate
the superiority of the proposed surrogate updating method of ASDK
over the commonly used EI, PI, and UCB acquisition functions, we
run ASDK with different methods and compare the estimated 𝑃𝑓 in
Fig. 5 for both previous experiments. Despite that all methods con-
verge to the ground truth, the proposed Maximum Integral Entropy
Infill outperforms the competitors in terms of the convergence rate
w.r.t the number of simulations in both cases, which is essential in
yield analysis to save the expensive simulation cost.



High-Dimensional Yield Estimation using Shrinkage Deep Features and Maximization of Integral Entropy Reduction ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

100 200 300 400 500
Dimensions

10 2

10 1

100

R
M

SE

HSIC
FA
RE
KPCA
PCA
MI
Full

Figure 6: Feature reduction experiment

Feature selection Validation. To demonstrate that the feature
selection by the HSIC-Lasso algorithm is reliable and efficient, we
compare ASDK with some traditional feature selection and dimen-
sion reduction algorithms, including Factor Analysis (FA), Princi-
pal Component Analysis (PCA), Mutual Information (MI) [8], and
Random Embedding (RE) [13]. We first randomly generate 1000
training data through Latin hypercube sampling (LHS). We run
the feature selection/dimension reduction algorithms to reduce the
dimensionality to a specified number and assess the model accu-
racy using RMSE using left-out testing points. The experiments
are repeated five times with randomly shuffled training and test-
ing data, and the average RMSE against the number of preserved
dimensionality is shown in Fig. 6. We can see very clearly that the
implemented HSIC-Lasso is significantly more efficient in preserv-
ing the dominant information, leading to a much lower RMSE until
the dimension reaches 500. This also partly explains the previous
superior performance of ASDK.

5 CONCLUSION
In this paper, we propose ASDK, a shrinkage deep kernel learning to
efficiently model high-dimensional input with an effective parallel
batch updating scheme, to efficiently tackle the yield estimation
of high-dimensional variational variables. Compared to the SOTA
methods, ASDK shows nearly 11.1x speed up with consistently
accurate results. Limitation of ASDK includes (1) solving entropy-
based optimization relies on high-performance GPU and is time-
consuming, and (2) the feature selection can ignore critical variables
and lead to model bias for the yield estimation.
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