
Seeking the Yield Barrier: High-Dimensional SRAM
Evaluation Through Optimal Manifold

Yanfang Liu†
School of Integrated Circuit Science
and Engineering, Beihang University

Beijing, China
liuyanfang@buaa.edu.cn

Guohao Dai†
College of Mechatronics and Control

Engineering, Shenzhen University
Shenzhen, China

daiguohao2019@email.szu.edu.cn

Wei W. Xing∗
School of Integrated Circuit Science
and Engineering, Beihang University

Beijing, China
wxing@buaa.edu.cn

Abstract—Being able to efficiently obtain an accurate estimate
of the failure probability of SRAM components has become a
central issue as model circuits shrink their scale to submicrometer
with advanced technology nodes. In this work, we revisit the
classic norm minimization method. We then generalize it with
infinite components and derive the novel optimal manifold concept,
which bridges the surrogate-based and importance sampling (IS)
yield estimation methods. We then derive a sub-optimal manifold,
optimal hypersphere, which leads to an efficient sampling method
being aware of the failure boundary called onion sampling.
Finally, we use a neural coupling flow (which learns from samples
like a surrogate model) as the IS proposal distribution. These
combinations give rise to a novel yield estimation method, named
Optimal Manifold Important Sampling (OPTIMIS), which keeps
the advantages of the surrogate and IS methods to deliver state-
of-the-art performance with robustness and consistency, with up
to 3.5x in efficiency and 3x in accuracy over the best of SOTA
methods in High-dimensional SRAM evaluation.

Index Terms—Yield Analysis, Importance Sampling, Normaliza-
tion Flow

I. INTRODUCTION

As the technology of integrated circuits develops, microelec-
tronic devices shrink their scale to submicrometer, which makes
random process variations, e.g., intra-die mismatches, doping
fluctuation, and threshold voltage variation, crucial factors to
be considered in a circuit design. The situation gets worse in
modern circuit designs, where some cells can be replicated
millions of times in a circuit, e.g., in an SRAM cell array.
A cornerstone to resolving the increasing concern of yield is
the development of efficient yield estimation methods, which
provide an accurate and fast failure probability estimation for a
given circuit design under specific process variations.

Monte Carlo (MC) is the golden standard baseline, and it
is commonly utilized to estimate the yield across industry
and academia. In a nutshell, MC runs SPICEs (Simulation
Program with Integrated Circuit Emphasis) with parameters
sampled from the process variation distribution millions of
times and counts the number of failures to deliver accurate
estimation. Obviously, MC is computationally expensive and
easily becomes infeasible for problems for low-yield problems,
which is rather common in modern circuit designs, e.g., the
yield of a 65nm SRAM cell array can be 10−5.

To improve the efficiency of yield estimation, importance-
sampling (IS)-based methods have been proposed. Instead of

This work is supported by Fundamental Research Funds for the Central
Universities; experiments are supported by Primarius Technologies Co.,Ltd.

†Both authors contributed equally to this research.
∗Corresponding author.

drawing samples from the default normal distribution, IS meth-
ods draw samples from a proposal distribution, which should be
designed to approximate the oracle failure distribution. Thus,
most efforts tried to design a proposal distribution that can
approximate the failure distribution well. For instance, [1]
shifts the sampling centroid of the normal distribution to the
closest failure point as the proposal distribution, which is well-
known as norm minimization (NM). Based on the shifting idea,
[2] proposes to sample from multiple failure regions using a
hyperspherical clustering method. Instead of relying on a static
proposal distribution, [3] proposes an adaptive importance sam-
pling (AIS) to update the shifted distribution as more samples
are collected. To better fit the failure distribution in a high-
dimensional space, [4] samples from multiple regions clustered
by multi-cone clustering and sequentially updates its proposal
distribution. AIS is further enhanced by [5] by introducing a
mixture of von Mises-Fisher distributions to replace the standard
normal distribution. The IS methods are robust and simple to
implement, making them popular in the industry. Nonetheless,
they still require a large number of SPICE simulations and can
not incorporate coming knowledge of new samples to update
their models (e.g., the proposal distribution and/or its family).

Another main path to efficient yield estimation is utilizing
powerful machine learning (ML) to build a data-driven surrogate
model to approximate the unknown indicator function and use
active learning to sequentially reduce prediction error. [6] uses
a Gaussian process (GP) to approximate the underlying per-
formance function and an entropy reduction method for active
learning. Based on the same updating scheme, [7] replaces
the GP with a nonlinear-correlated deep kernel method with
feature selection to identify the determinant features to focus on.
Instead of using a two-stage approach that potentially introduces
bias, [8] uses a low-rank tensor approximation to the polynomial
chaos expansion (PCE) to approximate the performance func-
tion. Deep learning (e.g., RBF network) can (also be) utilized
in combination with importance sampling to compute the yield
[9]. Despite their success, the surrogate methods inevitably
suffer from the “curse of dimensionality”. More specifically,
the high dimensionality (which is quite common in SRAM
circuits) makes it challenging to compute the integration over
the domain and data demanding to train the surrogate model,
which can defeat the purpose of introducing a surrogate model.
Another critical problem with surrogate-based methods is the
highly nonlinear optimization problem involved in the surrogate
model training, which, if not done right, can lead to a wrong

surrogate model and thus a wrong yield estimation, a disaster
the industry can not afford.

In this work, we aim to combine the advantages of IS and
surrogate methods to deliver an efficient and, most importantly,
robust yield estimation. To this end, we first revisit the classic
NM method (based on which many methods are proposed); we
generalize it with infinite components and derive the optimal
manifold, which reveals the close connection between IS and
surrogate methods and serves as a guideline in designing the
proposal distribution in IS methods. Based on the optimal
manifold, we propose a sub-optimal solution, optimal hyper-
sphere, and derive onion sampling, which provides efficient
and robust samples from the failure distribution. Finally, we
introduce neural spline flows (NSF) as the proposal distribution;
it sequentially approximates the truth failure probability with
more samples collected (as in a surrogate method) to deliver
efficient sampling. This combination gives rise to a novel sam-
pling method, named Optimal Manifold Important Sampling
(OPTIMIS), which absorbs the advantages of surrogate-based
and IS-based methods to deliver state-of-the-art (SOTA) perfor-
mance with robustness and efficiency. The novelty of this work
includes:

1) Optimal manifold: a generalization of the classic NM.
2) Onion sampling, which can efficiently sample from the

failure distribution
3) OPTIMIS, combining onion sampling and NSF to deliver

SOTA yield estimation; which is as efficient as the sur-
rogate methods and as robust as the IS methods.

4) The superiority is valid with SRAM circuits with up to
1093 dimensions, ablation study, and robustness test.

II. BACKGROUND

A. Problem Definition

Denote x = [x(1), x(2), · · · , x(D)]T ∈ X as the variation
process parameter, and X the variation parameter space. X
is generally a high-dimensional space (i.e., large D); Each
variable in x denotes the variation parameters of a circuit
during manufacturing, e.g., length or width of PMOS and PNOS
transistors. In general, x are considered mutually independent
Gaussian distributed, p(x) = (2π)

D
2 exp

(
−||x||2/2

)
. Given a

specific value of x, we can evaluate the circuit performance
y (e.g., memory read/write time and amplifier gain) through
SPICE simulation, y = f(x), where f(·) is the SPICE simulator,
which is considered an expensive and time-consuming black-
box function; y = [y(1), y(2), · · · , y(K)]T are the collections of
circuit performance based on the simulations. When K metrics
are all smaller than or equal to their respective thresholds
(predefined by designers) t, i.e., y(k) ≤ t(k) for k = 1, · · · ,K,
the circuit is considered as a successful design; otherwise, it is
a failure one. We use failure indicator I(x), which is 1 if x
lead to a failure design and 0 otherwise, to denote the failure
status of a circuit. Finally, the ground-truth failure rate P̂f is:
P̂f =

∫
X I (x) p(x)dx.

B. Monte Carlo and Importance Sampling

The direct calculation of the yield is intractable due to the
unknown I(x). A common approach to estimate the failure
probability is Monte Carlo (MC), which is easily implemented
by sampling xi from p(x) and evaluating the failure probability

by the ratio of failure samples to total samples. More specif-
ically, P̂f is approximated by Pf = 1

N

∑N
i=1 I(xi), where xi

is the i-th sample from p(x), and N is the number of samples.
When N → ∞, Pf → P̂f . To obtain an estimate of 1 − ε

accuracy with 1 − δ confidence, N ≈ log(1/δ)

ε2P̂f
is required.

For a modest 90% accuracy (ε = 0.1) with 90% confidence
(δ = 0.1), we need N ≈ 100/P̂f samples, which is infeasible
in practice for small P̂f , says, 10−5. We can also see this
intuitively from the fact that it requires averagely 1/P̂f samples
just to observe a failure event.

Instead of drawing samples from p(x), the IS methods draw
samples from a proposal distribution q(x) and estimate

Pf =

∫
X

I(x)p(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

I(xi)p(xi)

q(xi)
, (1)

where xi are samples drawn from q(x) and are used to
approximate the integral as in MC. For convenience, we define
the importance weight w(x) = p(x)

q(x) . Eq. (1) is more efficient
than MC if q(x) is chosen carefully.

C. Norm Minimization

One of the foundation work in IS for yield is the Norm
Minimization (NM [1], aka optimal shift vector), which samples
from a normal distribution centered at µ∗,

µ∗ = argmin ||x||2 s.t. I(x) = 1, (2)

where ||x||2 =
∑D

d=1(x
(d))2 is the Euclidean norm.

III. PROPOSED APPROACH

OPTIMIS relies on two key components: onion sampling
and NSF, both of which are based on the optimal manifold
generalized from NM. A heads-up example of OPTIMIS to
approximate five toy failure probability distributions using 1000
samples is shown in Figure 1 to show the effectiveness.

A. Optimal Proposal Distribution in IS

From Eq. (1), we can see that the optimal proposal distribu-
tion q(x) is the one that minimizes the approximate variance
given by the Delta method, i.e.,

q∗(x) = argmin
q

Eq

[
w2(x)

(
I(x)− P̂f

)2
]
. (3)

Utilizing Lagrange multiplier rule for calculus of variations, we
can show that the optimal proposal distribution is given by

q∗(x) = p(x)I(x)/P̂f . (4)

If we take a Laplace approximation, we have

q∗(x) ≈ p(x)I(x) exp
(
−(x− µ̂)TS−1(x− µ̂)

)
/P̂f , (5)

where µ̂ = argmaxx log p(x)I(x);S
−1 = ∇2

x log p(µ̂)I(µ̂).
Notice that p(x) is just a Gaussian, which is monotonically
decreasing in |x|. Thus, µ̂ is obtained for the smallest x that
satisfies I(x) = 1, exactly the solution in NM of Eq. (2).
Furthermore, the Laplace approximation indicates how to design
the covariance properly. However, I(x), in this case, is not a
continuous function, and the computation of S−1 is ill-posed.
That is probably the reason most previous works use a preset
diagonal covariance [1], [3], leading to inferior performance due
to the ignorance of the variance, which we will discuss later.

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

-15 -5 5 15
-15

-5

5

15

Fig. 1. Illustration of OPTIMIS in five (columns) 2D toy examples. Top row: the true log failure probability. Middle row: the log failure probability estimated
with KDE based on onion sampling with 1000 samples. Bottom row: the log failure probability estimated by NF based on the onion samples.

However, the main issue of NM is that it seeks only the
closest single failure region and ignores other failure regions,
leading to inferior performance. For instance, in Fig. 1, NM will
only work for the first case as the other four cases have multiple
failure regions. To resolve this issue, the SOTA methods seek
a mixture of distributions (e.g., vMF [5]) to approximate the
optimal proposal distribution. However, the number of mixture
components is highly problem-dependent, making this approach
impractical for real problems.

B. Optimal Manifold

To enhance NM for more complex problems, let us equip it
with an infinite mixture of Gaussian to drastically improve its
model capacity q(x) =

∑M
i=1 wiN (x − µi, sI), where wi is

the weight and M → ∞. Unlike the Laplace approximation, to
avoid ignorance of the variance, we minimize the KL divergence

KL(q∗(x)||q(x)) = Eq∗(x) [log q
∗(x)]−Eq∗(x) [log q(x)] , (6)

where Eq∗(x) [log q
∗(x)] is a constant of the entropy of the op-

timal proposal distribution. Minimization of the KL divergence
is equivalent to maximizing Eq∗(x) [log q(x)], which is the low
bound of the optimal solution. We now aim to optimize

argmax
{µi,wi}Mi=1

∫
p(x)I(x)/P̂f log

(
M∑
i=1

wiN (x− µi, sI)

)
dx. (7)

The complete solution to Eq. (7) might seem complicated.
But we can see that to get the maximum, the main volumes of
the Gaussian components (corresponding to a large wi) should
be placed near the failure boundaries B(x) = ∂I(x)/∂x ̸= 0.
We call this the optimal manifold, which does not necessarily
equal B(x). In practice, we cannot work with a Gaussian
mixture with infinite components. The optimal manifold sug-
gests a suboptimal solution to Eq. (7) with a finite number of
Gaussian components. If we set M = 1, the optimal manifold
becomes a variational version of NM, which should provide
better performance than the ordinary NM. Nevertheless, even

the variational NM is difficult to seek because I(x) is unknown,
which really gives credits to NM for its practicality.

The crucial point to get the optimal manifold or the optimal
proposal distribution is to approximate I(x). In the work of [6],
the authors derive a general framework for active learning with
optimal proposal samples, which are precisely the points that
reduce the uncertainty of I(x). This gives us a direct connection
between IS and surrogate methods for that they actually share
the same intermediate step, approximating I(x), in order to
efficiently estimate P̂f . The difference is that most IS methods
update the information about I(x) implicitly by random samples
to reveal the unseen B(x). Because the samples are generated
randomly, this procedure is not target orientated and thus is not
as efficient, which also comes with the advantage that it will
not be trapped in local minima and will always converge. On
the other hand, surrogate methods update the information about
I(x) explicitly by reducing the uncertainty of I(x). Because
I(x) is approximated with a regression that is highly non-
convex to optimize, and the optimization of the proposal points
is again highly complex, this procedure will be trapped in local
minima and will not always converge.

To combine both advantages of IS and surrogate methods, we
can use a complex generative model, says, normalizing flows
(NF), to learn from data and approximate q∗(x), while the
computation of P̂f is still done by IS with samples drawn from
the NF. This way, even if the proposal distribution is suboptimal,
the IS methods will always converge. In the meanwhile, the NF
can use existing samples to implicitly learn the target failure
probability. Although NF is a powerful model, it contains a deep
neural network (NN) and is thus data-demanding. The challenge
left is how to generate as many failure points as possible with
limited resources while these samples must come from q∗(x).

C. Optimal Hypersphere
Before we move to NF and the optimal manifold, we will

derive the optimal hypersphere and an effective onion sampling
to provide training data for NF. As discussed, the failure

boundary B(x) is unknown, and there is no way to actually
solve the optimization in Eq. (7) in practice. We thus turn to
an easier solution by constraining the Gaussian centroids lying
on a hypersphere of radius r, that is µ2

i = r. We aim to solve

argmax
{µi,wi}Mi=1

∫
p(x)I(x)/P̂f log

(
M∑
i=1

wiN (x− µi, sI)

)
dx, (8)

s.t. ||µi||2 = r. With M → ∞, solving (8) is equivalent to
optimizing the radius t such that the integral over I(x)p(x)
is maximized. We call such a hypersphere with radius r the
optimal hypersphere.

Certainly, the optimal hypersphere is also intractable due to
the absence of I(x). However, it shows us that the maximum is
achieved by a hollow hypersphere, with its radius r being near
the failure boundary B(x) with the main volume.

The optimal hypersphere suggests that we can sample inside a
hollow hypersphere to efficiently generate samples that are both
likely to fail (I(x) = 1), and come from the original parameter
distribution p(x). We propose a novel onion sampling inspired
by the optimal hypersphere in this section.

For a hypersphere with radius r, we can compute the cumu-
lative distribution function (CDF) i.e., F (r) =

∫
p(|x| < r)dx.

Following the Latin hypercube sampling (LHS), we divide the
domain with K hollow hyperspheres such that F (rk) = k

K ,
where rk is the radius of the k-th hypersphere. The particular
value of rk is easy to compute because the inverse of F (r) can
be computed analytically. If we select each hypersphere with
probability 1/K and generate J samples inside the hypersphere
using a uniform distribution (which will allow us to effectively
explore the domain for failure regions), we can reproduce
sampling from p(x) with precision proportional to 1/K.

As the optimal hypersphere suggests, we should avoid sam-
pling in the center, which is likely to be a non-failure region for
the yield problem. Instead of choosing a hypersphere randomly,
we start from the largest hypersphere r = rK . Inside the sphere,
we sample J points uniformly and put them through the SPCIE,
compute I(x), and keep all failure samples. We also define the
failure rate under the uniform sampling for the k-hypersphere as
Uk, which gives us an indication when we approach the failure
boundary B(x) where Uk will experience a sudden drop. We
repeat this process until Uk is below a threshold τ . A smaller
τ results in a more accurate sampling but will also increase the
computational cost. This sampling process is like peeling an
onion layer by layer, and thus we call it onion sampling, which
is summarized in Algorithm 1.

The onion sampling can be further improved for practical use.
We discuss some scenarios here. As discussed in the optimal
sphere, to have a good approximation of q∗(x), the key is to
have a good matching of the main volume for q∗(x). If we have
more but a limited budget left for the pre-sampling stage, we
can repeat the previous procedure but start from the ending
hypersphere near the optimal hypersphere going outward. If
the K-th hypersphere is not reached during this process, the
total samples might be a bit distorted from q∗(x) but still
provide a good training set for NF, which will correct such
distortion during its update iterations. If there is more budget,
we might exclude the possible non-failure regions, re-divide
the domain into K hyperspheres, and then repeat the onion
sampling process. This will give us a closer approximation to
the optimal hypersphere.

Algorithm 1 Onion Sampling
Require: SPICE-based Indication I(x), # of hypersphere K,

number of # per hypersphere J , threshold τ
1: Divide the domain into K hyperspheres with equally in-

creased cumulative probability
2: while Uk > τ do
3: Uniformly generate J points inside k hypersphere
4: Keep samples that fails, X = X ∪ xkj for I(xkj) = 1
5: Compute uniform failure rate Uk; k = k − 1
6: end while
7: return Failure sample collections X

D. Normalizing Flows For Optimal Proposal Distribution

The onion sampling is a simple yet effective method for
sampling approximately from the optimal proposal distribution
q∗(x) relying on the optimal hypersphere, which is a suboptimal
solution based on the optimal manifold. With samples from
onion sampling, we now harness the power of modern deep
learning and massively parallel computing to approximate the
optimal manifold and further improve our performance. More
specifically, we implement an NF with Neural Spline Flows
(NSF) [10].

NF is a class of generative models that can approximate any
complex distributions by transforming a simple base distribution
using a series of invertible transformations. In our case, the
base distribution is naturally the standard normal p(x) whereas
the target distribution q∗(x). Assume a mapping x = g(z),
where g : RD → RD is a bijective function, and z ∈ RD is
a random vector drawn from a normal distribution p(z) (which
distinguishes itself form p(x)). The PDF q(x) can be expressed
using the change of variables formula:

q(x) = p(h(x))|detDh(x)| = p(z)|detDg(h(x))|−1, (9)

where h(·) is the inverse function of g(·); Dh(x) = ∂h(x)
∂x is

the Jacobian matrix of h(x); likewise, Dg(z) = ∂g(z)
∂z is the

Jacobian matrix of g(z). Sampling from q(x) is equivalent to
sampling from p(z) and then applying mapping x = f(z). The
key to delivering a close approximation to q∗(x) is to choose
a proper mapping g(·), which admits an efficient inversion and
Jacobian matrix computation.

After many trial tests with different models (including au-
toregressive flow, affine coupling flow, planar flows, etc.), we
found NSF [10] works the best for the yield problem. In NSF,
z is divided into two parts, z = (z(1:d), z(d+1:D))T , and

x(1:d) = gϕ(z
(1:d)), x(d+1:D) = gθ(z

(d+1:D)), (10)

where θ(z(1:d)) is a NN that takes z(1:d) as input and outputs the
model parameters for a spline mapping gθ(z

(d+1:D)). gθ(·) is a
monotonic rational-quadratic spline whose each bin is defined
to be the ratio of two rational-quadratic polynomials [10].

Training the NF is straightforward by maximum likelihood
estimation (MLE), L =

∑N
i=1 log q(xi), using stochastic gra-

dient descent. The gradient of the log-likelihood is easily
computed via modern automatic differentiation tools based on
chain rules.

NSF offers an excellent combination of functional flexibility
whilst maintaining a numerically stable inverse that is of the
same computational and space complexities as the forward

CELL[0]

CELL[1]

CELL[N]

BLBL
WL[0]

WL[1]

WL[N]

0 1

0

0

1

1

……

WL

BL BL

VDD

GND

6T-SRAM

CELL

_

Fig. 2. The structure of SRAM column circuit

operation. This element-wise transform permits the accurate
representation of complex multivariate distributions. Another
advantage of NSF is that it can deal with high-dimensional
problems through the flow by identifying the most important
dimensions and then focusing on them.

IV. EXPERIMENTAL RESULTS

We firstly examine OPTIMIS in five toy examples with
different artificial failure boundaries (e.g., open boundaries,
multiple failure regions, and non-centered regions) with their
ground-truth log failure probability (LFP) in Fig. 1. Onion
sampling with 1000 samples and estimated LFP using kernel
density estimator (KDE) with a bandwidth of 0.75 are shown
in the second row. We can see that onion sampling is efficient
but also overestimate the LFP. NSF for the estimated LFP is
shown in the third row, which shows significant reductions in
the overestimation of onion sampling.

We assess OPTIMIS on challenging high-dimensional bench-
mark circuits, namely, three SRAM column circuits with 108,
569, and 1093 variation parameters, respectively. The circuits
are synthesized using the Synopsys Design Compiler and the
Cadence Virtuoso design tools. We set the target failure rate of
the circuits at approximately 10−5 to highlight the challenge
of the yield estimation problem. We implement MC as the
golden standard to estimate the ground-truth yields. To show
the accuracy and efficiency of OPTIMIS, we also implement
the SOTA IS methods, including Minimized Norm Importance
Sampling (MNIS) [1], Hyperspherical Clustering and Sampling
(HSCS) [2], Adaptive Importance Sampling (AIS) [3], Adap-
tive Clustering and Sampling (ACS) [4], and surrogate-based
methods, including Low-Rank Tensor Approximation (LRTA)
[8] and Absolute Shrinkage Deep Kernel learning (ASDK) [7],
as comparison methods.

The figure of Merit (FOM) ρ = std(Pf)/Pf (where std(Pf)
is the stand deviation of estimated yield) is used as the stopping
criterion for all methods with ρ = 0.1 (indicating at least 90%
accurate with 90% confidence interval) as in many previous
works, e.g., [1], [2], [9]. For the 108-dimensional case, we use
a 4-layer multi-layer perception (MLP), each with 432 hidden
units; for the high-dimensional 569 and 1093 cases, we use a 7-
layer MLP with 600 hidden units for each layer. ReLu activation
is used. The optimization is done with Adam with 500 epochs.
The baseline methods use (default) setting as suggested in their
papers. All experiments are performed on a Linux system with
AMD 5950x and 32GB RAM.

A. 108-Dimensional SRAM Column Circuit

An SRAM array is a typical type of random-access memory
and uses flip-flops to store data. The SRAM array and cell are
shown in Fig. 2, where WL is the word line, and BL is the bit
line; two cross-connected inventors composed of four transistors

10 8
10 7
10 6
10 5
10 4
10 3
10 2

P f

MC
AIS

MNIS
LRTA

HSCS
ASDK

ACS
Proposed

103 104 105 106

of Simulation

10 2

10 1

100

101

st
d(

P f
) /

 P
f

131.89x

Fig. 3. Pf and FOM on 108-dimensional SRAM column

10 8
10 7
10 6
10 5
10 4
10 3
10 2

P f

MC
AIS

MNIS
LRTA

HSCS
ASDK

ACS
Proposed

103 104 105 106

of Simulation

10 2
10 1
100
101
102

st
d(

P f
) /

 P
f 273.82x

Fig. 4. Pf and FOM on 569-dimensional SRAM column

are used for storing data, whereas the other two transistors
work as control switches for data transmission. Each transistor
contains three variational parameters. An 8-bit SRAM array is
composed of eight cells, resulting in 108 variation parameters.
We choose the delay time of read/write of the SRAM as the
output performance metric y of the circuit.

We show the failure probability estimation and FOM in
Fig. 3, and the numerical results are concluded in Table I.
The advantage of OPTIMIS is obvious by giving a 131.89x
speedup compared to MC, more than twice faster than the
second-best method AIS. Except for being the fastest, OPTIMIS
also achieves the best accuracy among all methods with a
relative error of 0.21%, more than 10x better than the second-
best method HSCS. It is also interesting to see that OPTIMIS
seriously overestimates the failure due to the suboptimal onion
sampling. Such a bias is then sequentially reduced as more
samples are collected.

B. 569-Dimensional SRAM Column Circuit

To validate OPTIMIS in practical scenarios, we work on a
commercial SRAM array solution with 528 transistors in the
design to form bit-cell arrays, sense amplifiers, and power paths.
Based on the transistor type (PMOS/NMOS), gate length, and
gate width, each transistor will associate with 0-3 variational pa-
rameters (i.e., mobility, oxide thickness, and saturation velocity)
based on the BSIM model. With a BSIM4 model, this leads to
569 variation parameters. The delay time of read/write of the
SRAM acts as the output metric y. The convergence dynamic is
shown in Fig. 4 with results in Table I. Similarly, the results of
OPTIMIS are significantly better than the competitors, showing
a 273.82x speedup over MC, which is almost 3.5x faster than the
second-best method ASDK. Most importantly, the estimation
results are very close to the ground truth, with a relative error of
0.25%. Again, the initial overestimation remains for OPTIMIS.

TABLE I
NUMERICAL RESULTS ON THREE SRAM COLUMN CIRCUITS

108-dimensional case 569-dimensional case 1093-dimensional case

Method Fail. prob. Rel. error # of sim. Speedup Fail. prob. Rel. error # of sim. Speedup Fail. prob. Rel. error # of sim. Speedup

MC 5.01e-5 - 699000 1x 2.50e-5 - 931000 1x 4.80e-5 - 1189000 1x
MNIS 4.15e-5 17.07% 47500 14.72x 2.07e-5 17.33% 59000 15.78x 4.21e-5 12.32% 81000 14.68x
HSCS 4.84e-5 3.36% 26500 26.38x 2.86e-5 14.27% 46500 20.02x 4.30e-5 10.47% 66000 18.02x
AIS 4.75e-5 5.21% 12300 56.83x 2.38e-5 4.99% 25700 36.23x 4.43e-5 7.75% 38000 31.29x
ACS 5.68e-5 13.40% 10400 67.21x 2.73e-5 9.19% 22500 41.38x 4.42e-5 7.83% 30400 39.11x
LRTA 4.50e-5 10.18% 13000 53.77x 2.26e-5 9.60% 18500 50.32x 5.25e-5 9.38% 24000 49.54x
ASDK 4.5e-5 10.18% 9200 75.98x 2.30e-5 8.00% 11800 78.90x 6.10e-5 27.08% 14550 81.72x
Proposed 5.02e-5 0.21% 5300 131.89x 2.49e-5 0.25% 3400 273.82x 4.67e-5 2.71% 6400 185.78x

10 8
10 7
10 6
10 5
10 4
10 3
10 2

P f

MC
AIS

MNIS
LRTA

HSCS
ASDK

ACS
Proposed

103 104 105 106

of Simulation

10 2

10 1

100

101

st
d(

P f
) /

 P
f

185.78x

Fig. 5. Pf and FOM on 1093-dimensional SRAM column

TABLE II
ABLATION EXPERIMENT OF PRE-SAMPLING METHOD

AIS AIS+ Impro. ACS ACS+ Impro.

Rel. error 7.98% 6.79% 1.18x 6.59% 4.77% 1.38x
of IS 13024 10854 1.20x 12100 9600 1.26x

C. 1093-Dimensional SRAM Column Circuit

We further increase the dimensions of the problem by using
a detailed BSIM5 model, learning to 1093 variation parameters.
As far as we are aware, no previous published work has ever
attempted to estimate the yield of such a high-dimensional
problem. Similarly, the delay time of read/write is used as the
output metric. We run 1,189,000 simulations using the MC
method and obtain the ground-truth failure rate, 4.80e-5. The
results for the competing methods are shown in Fig. 5 and
Table I. The superior OPTIMIS is consistent, although this
time, the improvement over the second-best method ASDK
is 2.2x, not as significant as in the previous experiments.
Nevertheless, the ASDK shows the largest error of 27.08%
among all methods.

D. Ablation Study

We validate the usefulness of the onion sampling by equip-
ping the classic IS methods, namely, AIS and ACS ,as their pre-
sampling procedure and compare with their original versions.
The experiments are conducted on the same 108-dimensional
SRAM experiment for its fast simulation speed. 1700 samples
are given for all methods as their initial sampling budget, and
the results are shown in Table II, which shows about 20%
improvement in accuracy speedup with our onion sampling
(AIS+ and ACS+).

E. Robustness Study

To further assess the robustness of our method, we conduct
a robustness study on the 108-dimensional SRAM circuit by
running experiments 10 times with random initializations. The

TABLE III
ROBUSTNESS TEST ON 108-DIMENSIONAL SRAM COLUMN

Method MNIS HSCS AIS ACS LRTA ASDK Proposed

Avg. RE 16.00% 8.90% 6.64% 6.45% 12.85% 10.18% 1.91%
Avg. speedup 13.73x 22.30x 44.48x 49.68x 52.01x 75.98x 131.89x

Fail 4/10 4/10 3/10 3/10 5/10 9/10 1/10

final estimations with relative errors larger than 50% are marked
fail. The statistical results for successful runs are shown in
Table III. As we expect, the surrogate methods, LRTA and
ASDK, suffer from great instability with more than 5 times fail,
whereas the IS methods are more stable. In contrast, OPTIMIS
shows the best performance for all metrics.

V. CONCLUSION

We generalize NM to optimal manifold and propose OPTI-
MIS to deliver the SOTA yield estimation. Limitation of OPTI-
MIS includes the implicit assumption of one failure boundary.
Also, the NSF might need tuning for different problems, even
though changing the NN structure in NSF does not have a
significant influence on all the conducted experiments.

REFERENCES

[1] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking the
simulation barrier: Sram evaluation through norm minimization,” in 2008
IEEE/ACM International Conference on Computer-Aided Design. IEEE,
2008, pp. 322–329.

[2] W. Wu, S. Bodapati, and L. He, “Hyperspherical clustering and sampling
for rare event analysis with multiple failure region coverage,” in Proceed-
ings of the 2016 on International Symposium on Physical Design, 2016,
pp. 153–160.

[3] X. Shi, F. Liu, J. Yang, and L. He, “A fast and robust failure analysis
of memory circuits using adaptive importance sampling method,” in 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE,
2018, pp. 1–6.

[4] X. Shi, H. Yan, J. Wang, X. Xu, F. Liu, L. Shi, and L. He, “Adaptive
clustering and sampling for high-dimensional and multi-failure-region
sram yield analysis,” in Proceedings of the 2019 International Symposium
on Physical Design, 2019, pp. 139–146.

[5] X. Shi, H. Yan, C. Li, J. Chen, L. Shi, and L. He, “A non-gaussian adaptive
importance sampling method for high-dimensional and multi-failure-
region yield analysis,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2020, pp. 1–8.

[6] S. Yin, X. Jin, L. Shi, K. Wang, and W. W. Xing, “Efficient bayesian yield
analysis and optimization with active learning,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 1195–1200.

[7] S. Yin, G. Dai, and W. W. Xing, “High-dimensional yield estimation using
shrinkage deep features and maximization of integral entropy reduction,”
in 2023 28th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2023.

[8] X. Shi, H. Yan, Q. Huang, J. Zhang, L. Shi, and L. He, “Meta-model based
high-dimensional yield analysis using low-rank tensor approximation,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–6.

[9] J. Yao, Z. Ye, and Y. Wang, “An efficient sram yield analysis and
optimization method with adaptive online surrogate modeling,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 7, pp. 1245–1253, 2015.

[10] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline
flows,” Advances in neural information processing systems, vol. 32, 2019.

