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Abstract

We develop a multi-fidelity surrogate modelling approach to replace the complex and costly physics-

based computer models that are often used in the optimization of solid oxide fuel cell (SOFC) performance, or

the simplified models that are used in lieu of complex models. We extend multi-fidelity stochastic collocation

through a feature engineering step, and eliminate the requirement for the exact low-fidelity output at the

inference stage. In contrast to previous approaches, the surrogate model we develop provides detailed spatial

information, rather than one or more scalar outputs. This allows for the incorporation of such information

into the objective of the optimization study, with the flexibility to choose from more than one objective, such

as a minimum, maximum or average. Furthermore, the detailed spatial information can be used for general

design purposes, such as ensuring uniformity in reactant and potential distributions. From the results on a

3-d SOFC model, we demonstrate highly accurate predictions of multiple spatially distributed quantities

at up to spatial 250,000 locations. The results are superior to state-of-the-art multi-fidelity approaches,

particularly for low numbers of high fidelity training points. We use the surrogate model to optimize the

SOFC performance with respect to different objectives (including with nonlinear constraints and multiple

objectives), with results that are accurate and are obtained in a fraction of the time required for the full

model.

Keywords: Solid oxide fuel cell optimization; spatially distributed; multi-fidelity; stochastic collocation;

feature engineering; Bayesian.

1 Introduction

Fuel cells (FCs) are expected to play a major role in the future energy landscape, for standalone stationary

power applications and for electric vehicle propulsion. FCs convert chemical energy into electricity [1, 2]
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generating benign products. Solid oxide fuel cells (SOFC) are highly attractive due to their fuel flexibility,

range of different geometries, and high temperatures, allowing for combined heat and power. The high

temperatures lead to low costs since they eliminate the need for a catalyst and allow for fuels to be reformed

internally in the anode. Modeling and simulation are important tools in the development of fuel cells, providing

fundamental insights and lowering the costs associated with laboratory investigations, particularly for design

and optimization [3, 4].

Detailed fuel cell models, however, involve a complex system of nonlinear partial differential equations

in a 3-d geometry comprising multiple components. They are often referred to as computational fluid

dynamics (CFD) approaches, although in the general case they contain other laws such as charge and reactant

conservation, and incorporate electrochemical reactions. Detailed reviews of SOFC and polymer electrolyte

membrane (PEM) fuel cell modelling, including the various approaches and modelling assumptions, can be

found in [5–7]. The time costs for solving such models, using finite differences, finite volumes or finite elements

along with time-stepping schemes, can be prohibitive for applications that require many results at different

parameter/input values, as for example, in optimization, sensitivity analyses and parameter identification. For

small number of parameters [8] the time costs may be acceptable, but the number of computer model runs

scales exponentially with the number of parameters, rendering complex models infeasible in many cases.

The most frequently employed strategy to circumvent this problem is to use simplified models. For example,

Salva et al. [9] used a 1-d analytical model for optimizing PEM fuel cell performance with respect to operating

conditions, while Hasanien et al. used a 0-d model for PEM fuel cell model parameter identification [10].

Pourkiaei et al. performed a multi-objective optimization of a tubular SOFC using a 0-d model combined

with a genetic algorithm, using the electrical power and exergy destruction as objectives [11]. A similar study

was performed by Mojaver et al. [12] for a methane-fueled SOFC, using the electrical energy efficiency, CO2

emissions and electrical exergy efficiency as the objectives. A combined Taguchi/AHP/TOPSIS method was

used for the optimization. A review of SOFC model parameter identification using similar models can be

found in [13], based on a variety of optimization techniques.

Such approaches, however, will inevitably introduce crude simplifications that can lead to unsatisfactory

results. Guo et al. used a detailed 3-d SOFC model that included charge, mass, momentum and heat balances.

The model was developed in [14] and coupled to a mechanical-failure model in [15] to study the impact of the

interconnector (IC) structure on the electrical performance and mechanical stability. Although the authors

stated that their study was an optimization, in common with many other such studies, in actual fact it was

a parametric study. Abdullah and Liu [16] performed a microstructural optimization for a low-temperature

SOFC by coupling macroscopic and pore-scale models. To make the optimization feasible, the macroscopic

model was restricted to 1-d.

An alternative approach is to use surrogate model approximations, usually based on machine learning
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or multi-fidelity methods. In the context of electrochemical energy technologies, machine learning methods

have been used extensively as surrogate models for sensitivity analyses [17], optimization [18, 19], fuel cell

degradation [20], monitoring fuel cell performance [21], battery health monitoring [22, 23], inverse parameter

estimation [24] and model identification [25]. Examples of the methods employed are linear regression [26],

artificial neural networks (ANNs) [27–29], deep learning networks (DNNs) [30,31] and Gaussian process (GP)

models [21, 32]. ANNs [28, 29] and DNNs [33] have proven to be particularly popular given the availability of

open-source and commercial codes.

In [34], Xu et al. assessed 19 different machine learning approaches, including ANNs, Boltzmann machines

and support vector regression trained on data from a CFD model, which were used in combination with a

genetic algorithm to optimize the power density output of a SOFC. Wang et al. [35] developed a response

surface model based on linear regression using data from a finite element model to optimize geometric

parameters for minimizing the long-term creep of a SOFC. Subotic et al., instead conducted an SOFC

performance optimization using experimental polarization and impedance data, used for an ANN (although

it was actual a parametric study) [29]. In general, however, ANNs require large volumes of data, which can

be a hindrance when the complex computer model used to generate the data requires hours or even days to

complete one simulation.

Almost exclusively, as in the examples cited above, machine-learning surrogate models have been used for

scalar outputs, such as a peak power density or an efficiency. Ideally, however, the output of the surrogate

model should contain the richness of information (spatial distributions of reactant concentrations, ionic and

electronic potentials, temperature, and so on) found in the original computer model, in order to make fully-

informed design and optimization decisions. For example, it is important to ensure uniform distributions of the

reactants, temperature, flow velocity and overpotentials in the electrodes, which optimizes the performance

and efficiency, and mitigates against degradation. This cannot be achieved by relying on a single or multiple

scalar summaries from the model. Spatio-temporal information can also allow for optimization with respect

to multiple objectives, and these objectives do not necessarily need to be decided beforehand. For example,

we may use a minimum, maximum, average or some other functional summary. In this paper we therefore

focus on the approximation of spatial outputs. Surrogate models for spatial or spatio-temporal outputs are

particularly challenging due to the sizes of the output spaces. It is no surprise therefore that there have been few

attempts to develop such models for fuel cells (and batteries), with exceptions being the reduced-dimensional

GP approach of Shah and co-workers [36, 37], and a similar approach combined with a coregionalisation

model for multi-task learning (multiple outputs learned together) [38].

Another paradigm for developing surrogates is multi-fidelity modelling, in which data from models of low

fidelity (low accuracy and computational cost) is leveraged to aid the learning of outputs at a higher fidelity [39].

The great advantage of such approaches is that they typically require fewer runs of the high-fidelity model
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than are required for pure machine learning approaches, which rely entirely on high-fidelity data. When the

number of system parameters (those of interest in the application) is high, collecting the data for training a

pure machine learning model can itself become an issue.

In [40], Liu et al. developed a dual-segmented approach for a PEM fuel cell stack in which interpolation

was used to bridge the gap between coarse- and fine-level segmentations. The authors claimed that the high

fidelity result was equivalent to a finite-element simulation in terms of accuracy, but presented no direct

evidence of this. Voskuilen et al. [41] surveyed various battery models, classifying them in terms of the fidelity,

which was typically based on the number and extent of simplifications (of the underlying physics). The authors

did not, however, combine these models in any way, in spite of the title of their paper. More conventional

and sophisticated multi-fidelity approaches have not been applied to fuel cells. Xing et al. [42] developed a

residual Gaussian process model that was tested in only one example on an SOFC finite-element model.

Many multi-fidelity models involve building a surrogate model (usually based on machine learning) at each

fidelity. The linear autoregressive (LAR) multi-fidelity model [43] (see also [44]) assumes a linear relationship

or parametric mapping between the different fidelity levels. Nonlinear AR (NARGP) [45, 46] places GP

priors over the unknown mappings between fidelities, allowing for greater model flexibility. For spatial and

spatio-temporal problems, the major shortcoming of this method is that the solution at a fidelity f is used as an

input to the GP model for fidelity f + 1. This presents an enormous challenge in terms of learning the model

hyperparameters. Furthermore, tractability is lost and expensive sampling or variational methods are required

for training and inference.

In multi-fidelity stochastic collocation (SC) [47], a greedy algorithm is used to identify inputs for a low

number of high-fidelity simulations, while the low-fidelity results are used to approximate the coefficients in a

high-fidelity SC approximation. SC and related approaches require out-of-sample low-fidelity model results

in order to make predictions, which may be justified in some design contexts but renders them unusable for

optimization, sensitivity analysis and uncertainty quantification when the low fidelity model is itself moderately

expensive, as is frequently the case.

Greedy NAR [48] provides a bridge between NARGP and SC, appealing to the advantages of both methods.

The high-fidelity model is written as a linear map of the low-fidelity model in an abstract (feature) space, with

the feature map specified implicitly by marginalising over the weight matrix appearing in the map and using

kernel substitution. Active learning is then used to efficiently identify the inputs for the data generation at all

fidelities greater than the lowest. Greedy NAR outperformed LAR, NARGP and SC, but was subsequently

outperformed by ResGP [42], which uses GP models for the residuals between fidelities, leading to a tractable

posterior and scalable hyperparameter learning.

In this paper we develop a multi-fidelity surrogate model for a SOFC that is capable of approximating

detailed spatial information and can be used for optimization purposes. We extend the SC approach to make
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it more accurate and apply it to a detailed 3-d SOFC model that includes mass, momentum and charge

balances in the channels, electrodes and electrolyte. The model capacity of SC is enhanced by introducing

a novel feature engineering step, and the requirement of low-fidelity data for predictions is eliminated by

using a GP model. The approach is shown to yield highly accurate predictions of multiple spatially distributed

quantities, including the electrolyte current density, ionic potential, volumetric anode current density and

cathode overpotential, at up to 250,000 spatial locations. We note that these quantities are chosen for the

purposes of illustration, and that there is no restriction on the type of field output, which can be related to

the electrochemical performance, flow field, reactant concentrations or temperature. Indeed, SC has been

successfully applied to frequency-modulated heat driven cavity flows [49], acoustics [50], molecular dynamics

[51], airfoil design [52], discrete-space probability density evolution [53], and turbulence modelling [54].

The results are compared to LAR, NARGP, ResGP and Greedy NAR, demonstrating superior performance,

particularly for low numbers of high fidelity training points. We also compare the computational complexities

of these methods with that of ours. We then apply the surrogate model to the optimization of the SOFC

performance, considering different objectives, objectives with nonlinear constraints and multiple objectives.

The level of detail furnished by the surrogate model we develop allows for flexibility in deciding the objectives

a-posteriori, in contrast to approaches that focus on scalar targets. We reiterate the novel aspects of our work:

(i) as far as we are aware, we develop the first genuine multi-fidelity approach for SOFC that requires only

a few runs of a complex (time-intensive), physics-based model to generate data; (ii) we are able to predict

spatial outputs, allowing for more informed design and optimization decisions, with some flexibility to change

objectives a-posteriori; (c) the method we develop significantly extends the original stochastic collocation

formulation using feature enhancement and, moreover, replaces the expensive low-fidelity simulation required

for prediction with an extremely rapid GP approximation.

2 Physics-based high and low fidelity models of a SOFC

We consider a detailed steady-state, isothermal 3-d solid oxide fuel cell model, which was implemented in

the COMSOL Multiphysics software package 1. We present only the essential details of the model and refer

the reader to the documentation for the full set of equations and parameter values. A two-fidelity setting

was considered. COMSOL Multiphysics uses the finite element method to solve the governing equations.

Additionally, a V cycle geometric multigrid is used in this particular implementation. The domain comprises

single anode and cathode channels, the electrodes and a ceramic separator, depicted in Fig. 1. The spatial

variable is denoted x = (x, y, z)T . The dimensions of the channels are 1 cm × 0.5 mm × 0.5 mm in the

x× y × z directions. The dimensions of the electrodes are 1 cm × 1 mm × 0.1 mm, and the dimensions of
1https://www.comsol.com/model/current-density-distribution-in-a-solid-oxide-fuel-cell-514

(Application ID: 514)
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the separator are 1 cm × 1 mm × 0.1 mm. The geometry is constructed such that the anode inlet is placed at

x = 0, while the cathode inlet is placed at x = 1 cm.

The model is based on hydrogen and air at the anode and cathode, respectively. Humidified hydrogen

(hydrogen and water vapour) is supplied at the anode inlet, while humidified air (oxygen, water vapour

and nitrogen) is supplied at the cathode inlet. The model includes charge balances in the electrolyte and

electrodes (based on Ohm’s law with fixed conductivity values) to calculate the electronic and ionic potentials.

The incompressible Navier-Stokes equations along with continuity are used for the gas channel flow, while

Brinkman’s equation is used for the porous electrode flow. Mass balances of all species are solved in the

channels and electrodes, incorporating Maxwell-Stefan diffusion and bulk motion by convection for the

multi-component transport.

The electrochemical reactions are:

H2 + O2− → H2O + 2e− anode

O2 + 4e− → 2O2− cathode
(1)

Butler-Volmer laws are assumed for these reactions, with current densities (Am−2) (and associated reaction

rates via stoichiometry) given by:

ia = i0,a

(
PH2

PH2,ref
exp

(
Fη

2RT

)
− PH2O

PH2O,ref
exp

(
− 3Fη

2RT

))
anode

ic = i0,c

(
exp

(
3.5Fη

RT

)
− PO2

PO2,ref
exp

(
− Fη

2RT

))
cathode

(2)

in which i0,a and i0,c are the anode and cathode exchange current densities (Am−2), Pj and Pj,ref denote

the partial pressures and reference pressures of species j (Pa), F is Faraday’s constant (Cmol−1), R is the

universal gas constant (Jmol−1K−1), T is the cell temperature (assumed constant) and η is the overpotential

(V). The latter is defined by:

η = φs − φe − Eeq,a (3)

in which φs and φe are the solid phase and electrolyte potentials, respectively, and Eeq is the equilibrium

potential (assumed constant) for the anode or cathode (j ∈ {a, c}).

The cell is assumed to operate in potentiostatic mode. At anode channel rib, where the electrode interfaces

with the end plate, a reference potential of zero is imposed, while the potential is set to the cell voltage Ecell

at the cathode channel rib, where again the electrode interfaces with the end plate. At the walls of the gas

channels and the porous electrode, insulation (zero mass and charge fluxes) is assumed. The compositions

(weight fractions of species) are specified at the inlets, while the outlet conditions assume a convective flux.

The default parameter values are specified in the documentation and are not repeated here to conserve space.

Aside from the chosen inputs (specified below) all parameters were set to their default values.
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Various settings can be adjusted in order to generate solutions of different fidelity. The low-fidelity solution

in this case was defined by 360 domain elements, 474 boundary elements, 212 edge elements (corresponding

to Fig. 1) and a relative tolerance of 0.1, while the high-fidelity solution was defined by 883601 domain

elements, 93067 boundary elements, 3979 edge elements and a relative tolerance of 0.001, with other settings

fixed, making the latter far more accurate and costly. The low fidelity model took 3 minutes and 3 seconds

to compute the 128 solutions, while the high-fidelity model took 14 hours, 17 minutes and 8 seconds on a

Macbook pro 2.3 GHz, 8-Core Intel Core i9 with 64 GB 2667 MHz DDR4 RAM.

Figure 1: Computational domain for the COMSOL model.

Four inputs were chosen for the experiments:

1. Electrode porosities in the range ε ∈ [0.4, 0.85]

2. Cell voltage in the range Ecell ∈ [0.3, 0.95] V

3. Cell temperature (assumed constant) in the range T ∈ [973, 1273] K

4. Channel pressures (assumed equal) in the range P ∈ [0.5, 2.5] atm.

and are collected inside an input vector:

ξ = (ε, Ecell, T, P )T (4)

The ranges above define the feasible input space D ⊂ Rp, p = 4.

N = 128 values of each input (vector) were selected using a Sobol sequence design-of-experiment, and

are labelled ξn ∈ D, n = 1 . . . , N . The chosen outputs were: (1) the electrolyte current density ie(x; ξ)

(A m−2); and (2) the ionic (electrolyte) potential φe(x; ξ) (V), both in the x− z plane at the centres of the
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channels in the y direction (see Fig. 1). This notation indicates that these outputs are functions of x, and are

parameterised by the inputs ξ.

Each of the outputs was recorded at locations xj , j = 1, . . . , d = 5000 on a uniform grid, and were

subsequently vectorised to form vectors yf
n ∈ Rd, where the subscript n indicates that the input ξn was used,

and f denotes the fidelity, namely f = F for the high fidelity output, and f = L for the low fidelity output.

Note that we use a generic symbol yf
n to denote both outputs in order to keep notation to a minimum.

Later in the optimization section 4.3 we also consider the volumetric current density in the anode it(x; ξ)

(Am−3) and the cathode overpotential ηc(x; ξ) (V), both recorded at 250,000 locations. We may think of the

outputs as values of mappings (functions) yf (ξ) of the input; that is, yf
n = yf (ξn). Our ultimate goal is to

find an estimator for the high-fidelity mapping yF (ξ) so that rapid and accurate predictions can be made for

an arbitrary ξ. This estimator can then be used for optimization, or any other application requiring repeated

evaluations of, and predictions from the original computer model, e.g., sensitivity analysis and uncertainty

quantification. The method we employ is an adaptation of the stochastic collocation (SC) approach [47],

overcoming two of its limitations.

3 Stochastic collocation multi-fidelity fusion

The multi-fidelity SC methodology is based on a combination of sampling refinement and multi-fidelity data

fusion. It has been successfully applied to numerous problems in science and engineering [50, 52, 54, 55].

Consider low- and high-fidelity models that define mappings yf : D → Rd from a p-dimensional input

parameter space D to low and high-fidelity output spaces lying in Rd. In essence, the SC approach [47] finds

an estimator yF (ξ) of the high-fidelity mapping in the form:

yH(ξ) =

M∑
n=1

cn(ξ)yH
n (5)

in which M is the number of training points and cn(ξ) are unknown coefficients that depend on the input ξ.

Clearly, this approach amounts to an interpolation, in which the coefficients (usually assumed to polynomials)

are estimated using values of yH(ξ) at judiciously selected collocation points, such as the Gauss-Lobatto-

Legendre or Fekete points [56]. Due to the cost associated with calculating values of yH(ξ), however, the

low-fidelity solutions are instead employed to approximate the cn(ξ). Given yL(ξ), corresponding to a general

ξ, the coefficients are determined by the conditions:

M∑
n=1

cn(ξ)(yL
n )TyL

n = (yL(ξ))TyL
n , ∀yL

n (6)

This is an interpolation or projection of yL(ξ) onto the space span{yL
n}, i.e., all linear combinations of the

low fidelity data points. In practice, the SC approach is equivalent to a Gaussian process model with a linear

kernel (Bayesian linear regression), as demonstrated in [48].
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Assume that we are able to sample at random from the parameter space D and obtain N low-fidelity model

evaluations. An N ×N Gramian matrix GL can be constructed as follows:

[GL]l,n = k
(
yL(ξl),y

L(ξn)
)
, l, n = 1, . . . , N (7)

where k(·, ·) : Rd × Rd → R is any valid kernel function. In the original formulation [47], a linear kernel is

used, i.e.:

k
(
yL(ξl),y

L(ξn)
)

= (yL(ξl))
TyL(ξn) (8)

as seen in Eq. (6). A sampling refinement procedure to select the collocation points is then employed, involving

the application of an LU decomposition with complete pivoting on the low-fidelity Gramian matrix GL. An

ordering of the low-fidelity data points based on their ‘importance’ (explained in the next section) is obtained

via the calculation of a matrix Q from:

PGLQ = LU (9)

where the matrices L and U are lower and upper triangular factorization matrices, respectively, while P and

Q are permutation matrices that reorder the rows and columns of the Gramian matrix, respectively. This

procedure leads to the selection of m � N sampling points with indices n1, . . . , nm, for determining the

cn(ξ) and evaluating the high-fidelity output at any ξ ∈ D. The latter is given by Eq. (5) applied at the

sampling points:

yH(ξ) =

m∑
i=1

ci(ξ)yH(ξni
) (10)

in which the ci(ξ) are are computed via a least-squares projection onto the low-fidelity model data:


GL

i1,i1
· · · GL

i1,im

...
. . .

...

GL
i1,im

· · · GL
im,im




c1(ξ)
...

cm(ξ)

 =


k
(
yL(ξ),yL(ξi1)

)
...

k
(
yL(ξ),yL(ξim)

)
 (11)

The yH(ξ) in Eq. (10) is of course not the true latent function but an estimator. In order to avoid notational

clutter, we do not make the distinction unless it is necessary. The same applies to the estimator of yL(ξ)

introduced later.

3.1 Explanation of the point selection strategy in multi-fidelity stochastic collocation

Selection of the inputs to generate the high-fidelity training data, i.e., the interpolation nodes ξni
used in

Eq. 10, is a weak greedy procedure. Consider a general description, in which we have a low-fidelity model

uL(ξ) : D → VL in some low-fidelity solution space VL that is assumed to be Hilbert space with inner
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product 〈·, ·〉L. Then the distance between any subspaceW ⊂ VL and a function v(ξ) ∈ VL can be defined as

the greatest lower bound of the distance between v andW , measured in terms of the norm induced by the

inner product ‖·‖L = 〈·, ·〉L:

dL(v,W ) = inf
w∈W
||(I − PW)v||L (12)

where PW denotes the orthogonal projection operator onto W and I is the identity operator. In our case,

u(ξ) = yL(ξ) and VL ⊂ Rd, which is obviously a (finite dimensional) Hilbert space, for which we can use

the standard inner product.

In radial basis methods (RBMs) for the (single-fidelity) solution u(ξ) : D → V to a parameter-dependent

PDE problem, a common greedy strategy is to select R query points ξ1, . . . , ξR, to generate basis vectors

u(ξ1), . . . , u(ξR), from the functional manifold {u(ξ) : ξ ∈ D} such that the distance (as defined above)

between {u(ξ) : ξ ∈ D} and span{u(ξ1), . . . , u(ξR)} ⊂ V is minimized.

We would like to perform a similar procedure to select query points for the high-fidelity data, but since the

high-fidelity model is expensive, the low fidelity solution is instead used as a proxy. The selection of query

points in RBMs as described above is implemented iteratively, by adding a point ξ∗ to the optimal set Γn at

step n such that the distance between uL(ξ∗) and UL(Γn) = span{u(ξ) | ξ ∈ Γn} is maximal:

ξ∗ = argmax
ξ∈D

dL(uL(ξ),UL(Γn), Γn+1 = Γn ∪ {ξ∗} (13)

in which D ⊆ D and Γ0 = {}, i.e., the empty set. Performing this process in the continuous space D = D is

generally not computationally feasible, due to the potentially very high number of queries to the low fidelity

model uL allied with the lack of a closed form expression for ∇ξu
L, necessitating expensive numerical

approximations. It is, however, achievable in a discrete finite-cardinality set D ⊂ D.

As proven by Narayan et al. [47], full-pivoting LU decomposition of the low-fidelity Gramian matrix GL

to obtain the m indices n1, . . . , nm, and corresponding sampling points Γm = {ξni
} is one of the greedy

solutions to the optimization problem defined in Eq. 13 on the finite-cardinality candidate set D = {ξn}Mn=1.

This assumes that D is dense enough to capture all important variations in the high-fidelity data, and that there

are no restrictions on selecting point in D.

3.2 Bayesian nonparametric model for the low-fidelity output when making predictions

In the original framework [47], a high-fidelity prediction yH(ξ) for an unseen input ξ requires the true

low-fidelity output yL(ξ), which can still be very expensive to obtain in real-wold applications. To build a

more efficient mutli-fidelity model, we use a GP approximation for the low-fidelity output by introducing a

prior:

yL(ξ) ∼ GP(yL(ξ) | 0, k(ξ, ξ′ | θ)⊗Q + σ2I⊗ δ(ξ, ξ′)) (14)
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in which GP(· | ·, ·) denotes a GP, with the first and second arguments denoting the mean and covariance

functions. The symbol ∼ signifies that the random variable or process to left is distributed according to the

distribution to the right, ⊗ is the Kronecker product, δ(ξ, ξ′) is the Kronecker-delta function and Q is a

coregionalization matrix (treated as hyperparameter), containing the covariances between the components of

yL(ξ). k(ξ, ξ′ | θ) is a kernel for the covariance across inputs, containing a vector of hyperparameter θ. The

product structure k(ξ, ξ′ | θ)⊗Q is referred to as separable [57]. The term σ2I⊗ δ(ξ, ξ′) accounts for i.i.d.

noise in the data, or equivalently acts as a regularization (penalty) term.

One of the most widely used kernels is the squared exponential automatic relevance determination (ARD)

kernel:

k(ξ, ξ′ | θ) = exp

(
−

d∑
l=1

|ξn,l − ξ′n,l|2

θ2l

)
(15)

in which ξn,l is the l−th component of ξn, and θl are correlation lengths that form the vector θ. The total set

of hyperparameters is {θ,Q, σ2}.

The simulation data can be collected in a matrix YL = [yL
1 , . . . ,y

L
NL

]T ∈ RNL×d, where NL is the

number of low fidelity data points used for training. The log marginal likelihood L for the model 14 is:

L =
1

2
ln|Σ|−1

2
tr
(
vec(YL)vec(YL)TΣ−1

)
− dNL

2
ln(2π) (16)

in which vec(·) denotes a vectorization and tr is the trace of a matrix. Σ = Q⊗K + σ2I ∈ RdNL×dNL is the

covariance matrix, in which K ∈ RNL×NL is given by [K]ij = k(ξi, ξj). A maximum likelihood estimate

(MLE) can be used for the hyperparameters, which can be placed in the following posterior distribution for

yL(ξ) [58]:

E[yL(ξ)] = (Q⊗ k(ξ))
T

Σ−1vec(YL)

Var
(
yL(ξ)

)
= k(ξ, ξ)Q− (Q⊗ k(ξ))

T
Σ−1 (Q⊗ k(ξ))

(17)

in which k(ξ) = [k(ξ, ξ1), · · · , k(ξ, ξNH
)]T contains the correlations between the output at a test input ξ and

the observations in the data set.

3.3 Efficient computation using a noise-free assumption

For multi-fidelity fusion problems, the noise term can, and in fact usually is, taken to be zero by virtue of the

fact that the low- and high-fidelity models are deterministic [47]. With this assumption, the predictive mean in
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Eq. 17 simplifies as follows:

E[yL(ξ)] = (Q⊗ k(ξ))
T

(Q⊗K)
−1 vec(YL)

= Q⊗ (k(ξ))
T (Q−1 ⊗K−1

)
vec(YL)

= (QQ−1)⊗ (k(ξ))
T

K−1vec(YL)

= I⊗ (k(ξ))
T

K−1vec(YL)

= vec
(

(k(ξ))
T

K−1YLIT
)

= (YL)TK−1k(ξ)

(18)

demonstrating that the value of Q does not affect the mean predictions. What is more, outputs in high-

dimensional spaces (large d) can be handled without the need for the difficult task of learning the d(d+ 1)/2

components of Q. To illustrate the difficulty in the optimization of (16), in the examples we consider,

d ∈ {5000, 250000}, yielding 1.25025× 107 or 3.125× 1010 entries. This would severely compromise the

accuracy of the maximum likelihood estimate of the hyperparameters.

Therefore, we set Q = I to obtain:

yL(ξ) ∼ GP
(
yL(ξ) | 0, k(ξ, ξ′)⊗ I

)
(19)

and the likelihood:

L =
d

2
ln|K|−1

2
tr
(
(YL))TK−1YL

)
− NLd

2
ln(2π) (20)

The computational complexity associated with this likelihood is now O(N3
Ld), in contrast to the O(N3

Ld
3)

complexity of the original likelihood maximization, making it significantly more scalable to high values of d.

The corresponding predictive posterior is as follows:

E[yL(ξ)] = k(ξ)TK−1YL

Var
(
yL(ξ)

)
=
(
k(ξ, ξ)− k(ξ)TK−1k(ξ)

)
⊗ I

(21)

which constitutes the estimator for the true low fidelity mapping.

3.4 Feature enhancement for the low-fidelity Gramian: an efficient nonlinear kernel

We note that the predictive equations in Eqs. (10) and (11) are very similar to those in Eq. (21). As we pointed

out in [48], SC is a special case of NAR when using a linear kernel. However, in practice, we find that

introducing a nonlinear kernel, e.g., an ARD kernel, can only improve the performance when sufficient data

is provided to accurately learn the hyperparameters introduced; for ARD there are O(d) hyperparameters,

which is typically very high for the types of models under consideration. In a practical situation in which the

high-fidelity observations are sparse, performance will therefore be compromised.
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There are possible remedies via approximate or fully Bayesian approaches, e.g., variational Bayes or

MCMC, which, however, are computationally expensive and can defeat the original purpose of finding an

inexpensive surrogate for the high fidelity model. To overcome this problem, we can use a feature enhancement

technique to augment the low-fidelity observations in order to make more accurate high-fidelity predictions.

Specifically, we design a feature transformation of the low-fidelity observations via a linear combination

of kernels as follows:

[GL]l,j =
〈
yL(ξl),y

L(ξj)
〉

+ ω1

〈
(yL(ξl))

2, (yL(ξj))
2
〉

+ ω2

〈
exp(yL(ξl)), exp(yL(ξj))

〉
+ ω3

〈
ln(yL(ξl)), ln(yL(ξj))

〉
+ ω4

〈
sin(yL(ξl)), sin(yL(ξj))

〉
+ . . .

(22)

where 〈·, ·〉 denotes the standard Euclidean inner product, ωk are weights and the operations (·)2, exp(·),

etc. are performed element-wise. Other operations included in this work are
√
·, |·| and cos(·), although any

arbitrary number Z of functions can be incorporated. In order to avoid overfitting, we place a Laplace prior

over each weight:

p(ωk) ∝ exp(−|ωk|) (23)

and set ωωω = (ω1, . . . , ωZ)T . The Laplace prior with a maximum-likelihood point estimate of ωωω is then

equivalent to minimizing the L2 loss function between the data points and their SC approximations with an L1

regularization term:

ωωω∗ = argmin
ωωω

1

2

NH∑
n=1

‖yH(ξn)− yH
n ‖2+λ‖ωωω‖1 (24)

in which: ‖···‖1 is the L1 norm; NH is the number of high fidelity samples available (NH = m with the

greedy strategy); yH(ξn) are the SC predictions (functions of ωωω) via Eqs. (10), (11) and (22) of the high-

fidelity observations yH
n ; and λ is the regularization constant, which is determined using a leave-one-out

cross-validation.

3.5 High-fidelity predictive posterior using Monte-Carlo integration

Given θ and ωωω, we can derive the high-fidelity posterior distribution. Despite the fact that the low-fidelity

prediction (21) for yL(ξ) is Gaussian, due to the feature enhancement, the high-fidelity prediction yH(ξ) is

no longer tractable, which necessitates integration:

p
(
yH(ξ)

)
=

∫
p(yL(ξ))p

(
yH(ξ)|yL(ξ)

)
dyL(ξ) (25)

in which p(yL(ξ)) is the predictive posterior in Eq. (21) and p
(
yH(ξ)|yL(ξ)

)
is the nonlinear deterministic

mapping given by Eqs. (10), (11) and and (22). If d is low, says less than 10, we can use an efficient Gaussian

quadrature to approximate the integral. For observations in high-dimensional spaces, we can use a Monte-Carlo

integration, which is more expensive but still efficient since sampling from a standard Gaussian distribution is

straightforward and quick using reparameterization.
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Table 1: Model complexity comparison. p is the dimension of the input space, d is the dimension of the output

space, NH and NL are the number of high and low fidelity training points, respectively, and Z is the number

of features used in Eq. (22).

Method Complexity Number of parameters

Our method O(N3
L) +O(N3

H) (p+ 1) + Z

NARGP O(N3
L) +O(N3

H) 2(p+ 1) + d

LAR O((NL +NH)3) 2(p+ 2)− 1

Greedy NAR O(N3
L) +O(N3

H) (p+ 1) + d

ResGP O(N3
L) +O(N3

H) 2(p+ 1)

To this end, we first sample Kd points γi from a normal distribution N (0, 1) and reshape them into

a matrix Γ ∈ Rd×K , with columns γγγk ∈ Rd, k = 1, . . . ,K. We can then approximate the mean of the

high-fidelity predictive distribution as:

E[yH(ξ)] ≈
K∑

k=1

(
yH
k (ξ)|yL

k (ξ)
)

=
1

K

K∑
k=1

m∑
l=1

ckl (ξ)yH (ξl) (26)

in which

yL
k (ξ) = k(ξ)TK−1YL + γγγk

√
k(ξ, ξ)− k(ξ)TK−1k(ξ) (27)

are samples from the low-fidelity predictive posterior (21). The coefficients ckl (ξ) are obtained by substituting

the low-fidelity samples into Eq. (11) with the kernel defined in Eq. (22). Similarly, the variance of the

predictive distribution is obtained from:

Var
(
yH(ξ)

)
=

1

K

K∑
k=1

(
m∑
l=1

ckl (ξ)yH (ξl)− E[yH(ξ)]

)(
m∑
l=1

ckl (ξ)yH (ξl)− E[yH(ξ)]

)T

(28)

3.6 Computational complexity

Table 1 compares the time/computational complexity for the training of our method with those of state-of-the-

art methods. For a GP model with NL training points, the computational complexity of the training is O(N3
L),

by virtue of the requirement to invert the NL × NL covariance matrix when implementing the maximum

log-likelihood solution [58]. For SC, the complexity isO(N3
H) due to the inversion of anNH×NH Grammian

matrix in the loss function (24). This is the same complexity as that of all the other methods in Table 1,

expect for linear autoregression (LAR) [43], which is considerably higher. The number of model parameters is
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comparable to ResGP [42] and LAR for typical values of p, but much lower than for NARGP [45] and Greedy

NAR [48].

4 Results and discussion

In the comparisons in this section, NARGP, LAR, Greedy NAR and ResGP are implemented according to

their original formulations and specifications. The GP based methods assume a zero-mean function after

centering the data and ARD kernels are used in all of these methods, except for NARGP. For NARGP, the

fidelity-1 kernel is an ARD kernel, and the fidelity 2 kernel is of the form used by Perdikaris et al. in their

original implementation [45]. Three ARD kernels are combined together by factoring the dependence on the

inputs and the low fidelity solution, and adding another kernel that represents a bias term. All methods were

implemented in both Python (PyTorch) and Matlab. For the optimization, Matlab was preferred due to the

availability of the Optimization Toolbox.

The prediction accuracy of all methods is measured using the root square mean error (RMSE)

RMSE =

√√√√ 1

Nt

Nt∑
n=1

‖yp,n − yn‖2 (29)

in which Nt is the number of test points, yp,n is the prediction and yn is the test point. All numerical

experiments were conducted five times with randomization of the data, and the average value of the RMSE is

presented. For individual results we use the square error (SE), ‖yp,n − yn‖2.
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Figure 2: Box plots of the square errors (SE) against the test examples for the prediction of the low fidelity

ionic potential φe(x; ξ) (V) and current density ie(x; ξ) (A m−2) using Eq. (21), for an increasing number of

training points.

Before moving onto the multi-fidelity results, we first show (Fig. 2) box plots of the square errors (SE)
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against the test examples for the prediction of the low fidelity ionic potential φe(x; ξ) (V) and current density

ie(x; ξ) (A m−2) using Eq. (21), for an increasing number of training points. There is a clear decrease in

the SE values as the number of training points increases, and the results are very accurate even at 40 training

points.

To give and indication of the significance of the sizes of the errors, we first note that the mean value of the

current density data was 1.058× 103 A m−2. The square root of the median square error per coordinate of the

output (d = 5000 in this case) at 40 training points is 5.963 A m−2, while the square root of the maximum

square error (an outlier) is 50.178 A m−2. The corresponding errors are significantly lower at 80 training

points. For the ionic potential, the mean value of the data was −0.0924 V. The square root of the median

square error per coordinate at 40 training points is 4.472× 10−4 V, while the square root of the maximum

square error (an outlier) is 1.890× 10−3. Again, the corresponding errors decrease significantly at 80 training

points.

4.1 Prediction of the ionic potential

The RMSE values (with the five-fold cross validation) relating to the discretised ionic potential φe(x; ξ) (V)

in the x− z plane at the channel centres are shown in Fig. 3, for increasing numbers of training samples, with

the high- to low-fidelity sample ratios fixed to 1:1, 1:2, 1:3, and 1:4. In each case the remaining high fidelity

data points were used for testing. Comparisons to the other methods are also shown. When the numbers of

low and high fidelity samples are equal, all methods yield a similar level of accuracy, with the exception of

NARGP at low training point numbers. This is not surprising considering the number of hyperparameters

involved in NARGP.

The accuracy of our method is very high, with average RMSE values below 1.65× 10−5 V per each of

the 5000 coordinates of the output when the number of low fidelity samples is more than around 25 (for all

training data ratios). This is ca. 0.017% of the mean value −0.0970 V of the ionic potential across the data set.

For around 55 training points, the RMSE is below 1× 10−5 V per coordinate. As the ratio of high-fidelity to

low-fidelity samples decreases, our method shows a significant improvement over the other methods, even at a

low to mid-range number of training points (40 to 60). NARGP performs poorly except when a large data set

is available; around 85 for a ratio of 3:1 and around 100 for a ratio of 1:4, in which case it approaches the

accuracy of our method. As already explained, this is to be expected for high values of d .

The improvement over the other methods for decreasing high-fidelity to low-fidelity sample ratios is

significant because it allows for fewer high-fidelity training points. For example, at a ratio of 4:1, with 72

low-fidelity and only 18 high-fidelity training points, our method is approximately 26% more accurate than

LAR, the next best method. LAR, moreover, has roughly double the computational complexity compared to

our method for this number of low and high fidelity samples.
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Figure 3: Log root mean square errors (RMSE) against the test examples for our proposed method, correspond-

ing to different numbers and ratios of low- (F1) and high-fidelity (F2) ionic potential φe(x; ξ) (V) training

data points. Included are comparisons to LAR, NARGP, ResGP, and Greedy NAR.
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Figure 4: A comparison of log RMSE for stochastic collocation (SC) and our proposed method with the feature

enhancement in Eq. (22). In this case, the exact low fidelity data is provided for prediction.

We now compare our method to SC, in which both methods are provided with the exact low fidelity data

for prediction. This allows us to assess the effect of the added features. The number of low and high fidelity

training points is the same for both methods. As can be seen in Fig. 4, the methods are roughly the same for

training point numbers below 25, but for higher numbers of training points our method is significantly more

accurate. For training point numbers above 70, the RMSE is ca. 25% lower. Even at 55 training points it is

more than 11% lower. This underlines the benefit of the added features.

We note also that in Fig. 4 the RMSE is significantly lower for both methods than the errors in Fig. 3 .

This is because the low fidelity data is provided for both methods, whereas in Fig. 3 the GP model (21) is

used to predict the low-fidelity result in order to generate the high-fidelity approximation. Thus, it is not a

fair comparison since execution of the low fidelity model involves considerable computational costs. For the

optimization presented later (and other applications) it is usually infeasible to make repeated calls to the low

fidelity model.
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Figure 5: Three predictions of the ionic potential φe(x; ξ) (V) in the x− z plane at the channel centres (Fig.

1) for 80 low-fidelity and 20 high-fidelity training points. These predictions were chosen such that the top

row exhibited the lowest square error, the middle row close to the median square error and the bottom row the

highest square error. The first column contains the prediction, the second column the tests (ground truths) and

the third column the point-wise absolute differences.

Examples of the predictions using our method are shown in Fig. 5, corresponding to the case with the

lowest square error, a case in the region of the median square error and the case with the highest square error.

Also shown are the tests (ground truths) and the point-wise absolute differences between the prediction and

ground truth. 80 low-fidelity and 20 high-fidelity training points were used to generate these results. It can be

seen that even in the case of the highest square error, the prediction is highly accurate, both qualitatively and

quantitatively.

19



4.2 Prediction of the current density

Figure 6: Log root mean square errors (RMSE) against the test examples for our proposed method, corre-

sponding to different numbers and ratios of low- (F1) and high-fidelity (F2) current density ie(x; ξ) (A m−2)

training data points. Included are comparisons to LAR, NARGP, ResGP, and Greedy NAR.

The RMSE values (with the five-fold cross validation) relating to the discretised current density ie(x; ξ) (A

m−2) in the x− z plane at the channel centres are shown in Fig. 6, for increasing numbers of training samples

and different high- to low-fidelity sample ratios. In each case the remaining high fidelity data points were used

for testing. Again, comparisons to the other methods are provided. As with the ionic potential, the RMSE

values are roughly the same when the numbers of low and high-fidelity samples are equal. This, however, is

unrealistic. The more realistic scenarios of 1:2, 1:3, and 1:4 show again that our method yields the lowest

RMSE in most cases, and the differences are especially noticeable at the two lowest ratios. It must be said,

however, that the differences are not as pronounced as in the case of the ionic potential. At a training ratio of

1:3, the RMSE is, nevertheless, ca. 20% lower than it is for ResGP, the next best method.
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Examples of the predictions using our method are shown in Fig. 7, corresponding to the case with the

lowest square error, a case with a square error in the vicinity of the median square error and the case with the

highest square error, together with the ground truths and the point-wise absolute differences. 80 low-fidelity

and 20 high-fidelity training points were used. Again, even in the case of the highest square error, the prediction

is highly accurate.

Figure 7: Three predictions of the current density ie(x; ξ) (A m−2) in the x− z plane at the channel centres

(Fig. 1) for 80 low-fidelity and 20 high-fidelity training points. These predictions were chosen such that the

top row exhibited the lowest square error, the middle row close to the median square error and the bottom row

the highest square error. The first column contains the prediction, the second column the tests (ground truths)

and the third column the point-wise absolute differences.
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4.3 Surrogate assisted optimization of an SOFC

The results of the previous section demonstrate that our method has sufficient accuracy to be used as surrogate

model for optimization. In this section we employ the method to optimize the SOFC performance with respect

to several objectives. We note that the objectives are illustrative and serve as examples and tests, rather than

being physically inspired.

We start with the aim of maximizing the current density in the anode. For this we extracted values of the

volumetric current density it(x; ξn) for each of the 128 inputs ξn. The values were taken at 250, 000 locations

xj and vectorised to form outputs yn as described in section 2. The objective is:

ξ∗ = argmax
ξ

1

V

∫
x

it(x; ξ)dx

subject to

0.2 ≤ ξ1 ≤ 0.9, 0.1 V ≤ ξ2 ≤ 0.95 V 800 K ≤ ξ3 ≤ 1500 K, 0.5 atm ≤ ξ3 ≤ 3 atm

(30)

where V is the volume of the anode. We note that the lower and upper bounds on the input are deliberately

chosen to fall outside the design space D used to train the model, so that problem (30) forms a good test for

the reliability of the model. We use our multi-fidelity surrogate model for it(x; ξn), namely, for y(ξ), with a

trapezoidal rule to estimate the integral in (30), based on the components of y(ξ).

The optimization method used is a primal-dual interior point method, i.e., both the primal and the dual

problems are simultaneously solved, implemented in Matlab (the ’fmincon’ function). This particular interior

point method [59] is a variant of predictor-corrector infeasible-interior-point algorithm by Mehrotra [60],

which calculates a Newton (prediction) direction, followed by a corrector direction, in which a barrier is

introduced.

The work flow is as follows:

1. Load the data set (inputs and outputs for low and high fidelity)

2. Use Eq. (20), (21) to obtain the low-fidelity posterior prediction for yL(ξ) for a given number of low

fidelity training points

3. The high fidelity predictive posterior mean for yH(ξ) is given by Eqs. (26) and (27), using Eqs. (11),

(21) and (22), for a given number of low and high fidelity training points

4. Perform the optimization using the predictive posterior mean for yH(ξ) to estimate the objective

function using a trapezoidal rule

Using 80 low-fidelity and 40 high-fidelity training points, the results are summarised in Table 2, averaged over

5 experiments. The average time taken to estimate ξ∗ (the entire procedure described above) was 22.95 s,
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Table 2: Solutions to the optimization problems (30)-(33), together with the function evaluation counts and the

times taken.

Objective ξ1 ξ2/V ξ3/K ξ4/atm Time/s Function evals

(30) 0.9 0.1 800 3 22.95 121

(31) 0.9 0.1 800 3 12.11 67

(32) 0.2 0.1 800 3 17.27 316

(33) 0.2009 0.6957 1100.4 2.9992 17.27 387

and yielded ξ∗ = (0.9, 0.1 V, 800 K, 3 atm)T − εεε, in which each component of εεε is O(10−7). The function

evaluation count ranged from 87 to 153, underlining the benefit of replacing the high-fidelity solver with the

surrogate. The RMSE for the high-fidelity prediction against 88 high-fidelity test points was 1.334× 10−4

A cm−3 per component of y (d = 250, 000), while the mean value of it(x; ξn) in the data set was 19.754 A

cm−3.

The result in Table 2 is of course correct, since for the highest current density we need to use the highest

porosity and channel inlet pressures, together with the lowest cell voltage and temperature. Note that in the

COMSOL model, the inlet mole fractions of species are fixed and the channel inlet concentrations C follow

the ideal gas law C = P/(RT ). Thus, higher temperatures lead to lower concentrations for a fixed channel

pressure, which overwhelms any other effects associated with higher temperatures, such as faster kinetics.

The highest channel concentrations are attained when P = 3 atm and T = 800K. Fixing the channel inlet

pressures and varying the concentrations independently would lead to the opposite result, namely that higher

temperatures would lead to higher current densities.

Applying the same procedure to:

ξ∗ = argmax
ξ

1

A

∫
x

ie(x; ξ)dx

subject to

0.2 ≤ ξ1 ≤ 0.9, 0.1 V ≤ ξ2 ≤ 0.95 V, 800 K ≤ ξ3 ≤ 1500 K, 0.5 atm ≤ ξ3 ≤ 3 atm

(31)

in which we maximize the average of the electrolyte current density in the x− z plane (with area A) at the

channel centres, led to the same result (to within 10−6 for all components of ξ) for the same reasons, as

summarised in Table 2.

We now turn our attention to maximizing the magnitude of the average electrolyte potential in the x− z
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plane at the channel centres:

ξ∗ = argmax
ξ

∣∣∣∣ 1

A

∫
x

φe(x; ξ)dx

∣∣∣∣
subject to

0.2 ≤ ξ1 ≤ 0.9, 0.1 V ≤ ξ2 ≤ 0.95 V, 800 K ≤ ξ3 ≤ 1500 K, 0.5 atm ≤ ξ3 ≤ 3 atm

(32)

The result (to within 10−4 for all components of ξ) is shown in Table 2. Here we see that the maximum

occurs for the lowest temperature and highest pressure (i.e., the highest channel concentrations), the lowest

cell voltage and the lowest porosity. This is as expected, since the lowest electrode porosity leads to the highest

volume fraction of electrolyte. In this case the average number of function evaluations was 316, which would

take around 35 hrs to complete with the original high-fidelity COMSOL model. We now add a nonlinear

constraint to (32), namely that the minimum value of φe(x; ξ) should not be less than −0.2V:

ξ∗ = argmax
ξ

∣∣∣∣ 1

A

∫
x

φe(x; ξ)dx

∣∣∣∣
subject to

−0.2 V ≤ minξ φe(x; ξ)

0.2 ≤ ξ1 ≤ 0.9, 0.1 V ≤ ξ2 ≤ 0.95 V, 800 K ≤ ξ3 ≤ 1500 K, 0.5 atm ≤ ξ3 ≤ 3 atm

(33)

The result is again shown in Table 2. The values were averaged over 5 runs, with differences between the

values of each coordinate of ξ within 0.5%. Here, we find that to maximize the magnitude of the average

electrolyte potential, the added constraint raises the optimal temperature to ca. 1100 K and raises the cell

voltage to ca. 0.7 V, while the channel pressure and electrode porosity remain unchanged. Both a higher

cell voltage and a higher temperature (which lowers the channel concentrations) will lower the rate of charge

transfer, and therefore lower the magnitude of the average electrolyte potential.

The final experiment relates to multiple objectives, namely:

ξ∗ = argmax
ξ

f(ξ) =

(
1

V

∫
x

it(x; ξ)dx, − 1

V

∫
x

ηc(x; ξ)dx

)T

subject to

0.4 ≤ ξ1 ≤ 0.8, 0.2 V ≤ ξ2 ≤ 0.85 V, 973 K ≤ ξ3 ≤ 1273 K, 0.5 atm ≤ ξ3 ≤ 2.5 atm

(34)

in which we simultaneously wish to maximize the average volumetric anode current density and minimize

the magnitude of the average cathode overpotential ηc(x; ξ). As with the volumetric anode current density,

the cathode overpotential was recorded at 250, 000 spatial locations and vectorised to form outputs yn. The

objectives in this case are clearly competing. To solve this problem we approximate the Pareto front. This is

the first stage of a so-called Generate-First Choose-Later approach, in which a set of Pareto optimal solutions
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is first generated as a candidate set, and from which the design choice can subsequently be made according

to other considerations, experience and preferences. A solution is called Pareto optimal or non-dominated if

none of the objectives can be improved upon with degrading one or more of the other objectives. The Pareto

front is the set of all such solutions, and it was approximated using the genetic algorithm implemented in the

‘gamultiobj’ function in Matlab.

The average time taken to build the surrogate model and conduct the optimization (over 5 experiments)

was 242.43 s, and on average 7350 function evaluations were required. The results are shown in Figure 8, in

which the objective function values corresponding to the Pareto optimal solutions are plotted against each other.

In total, a set of 20 Pareto optimal solutions were generated, all of which could be considered as candidates for

achieving the objective.
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Figure 8: A plot of the objective function values corresponding to the Pareto optimal solutions to problem (34).

Although, as stated, the objectives chosen are for illustration rather than for any particular physical

significance, most of the results above are readily explainable, which facilitates the validation of the approach.

Other objectives (single or multiple) would not require a qualitatively different approach. The method is

flexible and general enough to incorporate any summary objective or objectives, as long as the corresponding

data is available from the multi-fidelity model.

5 Summary and Conclusions

Modelling and simulation play a major role in the development of fuel cell technologies. The complexity

of computer models and the attendant times associated with their execution has led to a growth in surrogate

modelling approaches for applications such as optimization. Very few such approaches are based on multi-

fidelity methods, despite their advantages over pure machine learning models. In addition, few attempts have

been made in the fuel cell literature to capture spatial variations in key quantities with surrogate models. In
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this paper we extended the multi-fidelity stochastic collocation framework for spatially distributed outputs

using a feature enhancement, and removed the requirement for exact low-fidelity outputs during inference by

using another surrogate model. Our approach is Bayesian, so that estimates of uncertainty are possible.

We showed that the addition of features into the original stochastic colocation formulation can improve its

accuracy. Experiments on a detailed SOFC model at two fidelities showed that our approach leads to a highly

accurate surrogate model, outperforming several state-of-the-art multi-fidelity methods. It was used in several

SOFC optimization problems, for a range of different objectives, for objectives with nonlinear constraints and

for multiple objectives. The level of detail furnished by our approach allows for a great deal of flexibility in

deciding the objectives a-posteriori, in contrast to focusing on specific scalar targets. It is also worth noting

that using the original high-fidelity model would not be feasible for many problems of this nature, such as the

multi-objective example we consider, in which over 7000 function evaluations were required.
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