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1. Introduction

Electronic structure theory methods for the prediction of molecular properties in chemical compound

space form a hierarchy in terms of accuracy and computational costs. The Hartree-Fock (HF) method

approximates the many-electron wave function using a single Slater determinant of single-electron wave

functions, thereby neglecting electronic correlations and overestimating energies. Post-HF methods attempt

to correct at various levels the inadequacies of HF. Configuration interaction (CI) incorporates two or more

determinants, depending on the number of excitations allowed. Other notable methods include coupled cluster

(CC) theory and Moller-Plesset (MP) perturbation theory. All of these and other post-HF wave function

methods add massive additional computational costs to the O(N3) cost of HF. As a result, they are restricted

to small system sizes. Semi-empirical methods, such as CNDO/INDO [? ], AM1 [? ], ZINDO ? ], follow the

same framework but at a considerably reduced computational cost afforded by neglecting or approximating

the time-consuming two-electron integrals. The low accuracy is not acceptable for most applications, but these

methods remain important for large-scale systems in which higher levels of theory are not possible.

The most ubiquitous electronic-structure methodology is Kohn-Sham (KS) density functional theory (DFT),
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with exchange and correlation energy functionals approximated by a hierarchy of models [? ]. The basis of

DFT is the Hohenberg-Kohn theorems [? ], which permit circumvention of the problem of approximating the

many-body wave function directly. Although it often fails in the presence of strong electronic correlations and

non-local van der Waals interactions [? ], DFT strikes a good balance between accuracy and computational

costs. The scaling of DFT is O(N3), significantly lower than those of advanced wave function based methods,

such as CCSD(T) [? ] (O(N7)) and MP2 [? ] (O(N5)). KS-DFT constructs a fictitious system of non-

interacting electrons with electron density equal to that of the ground-state density n(r) of the real system. At

the heart of the standard KS-DFT approach is the exchange-correlation potential vxc[n](r), which arises as

the functional derivative of an exchange-correlation energy Exc[n], a component of the total energy that is

introduced by separating out the non-interacting kinetic energy functional and the Hartree energy.

The major approximation in KS-DFT concerns the form of Exc[n], the exact form of which is not known.

The simplest approximation of all are the local density approximations (LDA), which approximate Exc[n]

based on a homogeneous electron gas of density n(r) [? ? ]. Generalised gradient approximation (GGA)

functionals such as PBE [? ] depend locally on n(r) and∇n(r). Meta-GGA further incorporate the Laplacian

∇2n(r), e.g., TPSS [? ], which has shown some show improvements over PBE in terms of atomisation and

surface energies [? ]. Using exact (Hartree-Fock) exchange energy as a functional of the KS orbitals in

combination with local correlations leads to what are termed hybrid functionals. Perhaps the best known is

the B3LYP functional, which combines an LDA exchange with a gradient correction, a GGA correlation, and

a LDA correlation, with fitting of key parameters to molecular data [? ? ? ? ]. The PBE0 functional, on

the other hand, combines the PBE exchange with the Hartree-Fock exchange in a 3:1 ratio, together with

the PBE correlation term [? ]. In fact, there is a vast array of functionals available, with new functionals

continually being developed. More sophisticated functionals, going from LDA to GGAs to meta-GGAs to

hybrid functionals, typically improve accuracy but at the expense of considerable additional computational

costs.

The computational resources and times required for very accurate predictions has motivated the use of
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approximate methods, beyond the semi-empirical methods described above. Notably, machine learning has

been used in various ways to replace all or certain aspects of the calculations. The most obvious approach is

to directly learn the map between the system and chosen outputs, such as atomization energies [? ? ? ]. A

smaller number of attempts have been made to find mappings between the charge density and the functional

contributions to the total energy, as well as mappings between the external potential and the charge density

[? ? ]. The motivation is often a machine learning approximation of the kinetic energy functional to speed

up the KS-DFT calculations [? ? ], but there are key challenges in evaluating the functional derivative. An

alternative is instead to focus on the density of states [? ? ] or local density of states [? ? ]. A key ingredient

of all machine learning approaches for such systems is in characterising the inputs. A number of methods have

been employed, including Coulomb matrices [? ? ] or eigenvalues of Coulomb matrices [? ? ], bags of bonds

(BoB) [? ], smooth overlap of atomic positions (SOAP) [? ], or generalized symmetry functions [? ].

Another main route for reducing the computational burden of complex models is multi-fidelity modelling,

which combines models of different fidelity in such a way that it reduces reliance on high-fidelity results

[? ? ? ? ]. In contrast to pure machine learning approaches, multi-fidelity methods have receive almost no

attention for electronic structure calculations, despite being one of the main surrogate modelling paradigms.

Multi-fidelity models typically involve the construction of surrogate models based on the underlying models at

different fidelity [? ? ], or in a smaller number of cases, by including corrections to the low-fidelity results

based on a limited number of observations at a higher fidelity [? ? ? ? ]. This is particularly relevant for

electronic structure methods since it may not always be advisable to replace the entire modelling approach

with a data-driven counterpart.

Recently, Tran et al. [? ] developed a multi-fidleity model taking as low and high fidelities the Spectral

Neighbor Analysis Potential (SNAP) ML-IAP25 [? ] and DFT models, respectively, with applications to MD

simulations of ternary random alloys. The authors used the classical autoregressive (AR) model of ? ], which

exploits correlations between low and high fidelity samples and assumes a linear relationship between the two

to acquire accurate solutions without full reliance on the high-fidelity model. The same method was used by ?
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] to learn lattice energies of crystals, with a force field method used as the low-fidelity model and either GGA

or hybrid DFT as the high fidelity model.

AR was improved upon by ? ], who developed the nonlinear autoregressive model (NAR) to enhance

the predictive power of AR by placing a GP prior over the unknown mapping between fidelities. The major

drawbacks to this approach is that it requires expensive sampling methods to sample from the posterior and

the high fidelity GP takes the low fidelity output as an input. A tractable alternative was developed in by

Xing et al. [? ], based on a residual structure and GP priors over the residuals. This method leads to an

analytical posterior and it was shown to outperform the other main GP based approaches, including deep GPs.

Stochastic collocation [? ] is also another prominent multi-fidelity method. In this method, the coefficients

of a low-fidelity projection onto an approximating subspace are used as the coefficients for the high-fidelity

equivalent (it is also a form of interpolation). As shown in ? ], it is nothing more than a GP prediction with

a linear kernel. The obvious drawback of this method is that it relies on out-of-sample executions of the

full low-fidelity model for making predictions, which is a serious drawback for extensive explorations of

compound spaces.

In this paper, we develop a new multi-fidelity model specific to electronic structure calculation outputs,

e.g. the ground state energy or highest/lowest un/occupied molecular orbital (HOMO/LUMO) energy. This

new method relies on extracting features from the Coulomb matrix representations of the molecules, which

together with the low fidelity output are fed into a convolutional neural network to predict the high fidelity

output. The method is applied to the GDB-13 ? ] database, which stores a large volume of data on drug-like

molecules with up to 13 heavy atoms. Over 7000 organic molecules appear in the database, so this other

GDB sets have frequently been used for assessing machine learning methods ? ? ]. We show that our new

method outperforms AR, NAR, ResGP and SC by a considerable margin on both the HOMO/LUMO and the

polarizability.
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2. Data sets

This dataset is a subset of GDB-13 (a database of nearly 1 billion stable and synthetically accessible

organic molecules) composed of all molecules of up to 23 atoms (including 7 heavy atoms C, N, O, and S),

totalling 7165 molecules. This dataset features a large variety of molecular structures such as double and triple

bonds, cycles, carboxy, cyanide, amide, alcohol and epoxy. The molecule descriptors are Coulomb matrices,

defined as

Cii =
1

2
Z2.4
i (1)

Cij =
ZiZj
|Ri −Rj |

(2)

where Zi is the nuclear charge of atom i and Ri is its position. The Coulomb matrix has built-in invariance to

translation and rotation of the molecule. The dataset comprises the inputs in the form of 23× 23 Coulomb

matrices and various properties calculated using different levels of theory. Of these properties polarizability and

HOMO/LUMO data are available at multiple fidelities. In the first case, DFT results with a PBE0 functional

are available as the high fidelity and SCS data are available as the (more approximate) low fidelity data. For

the HOMO/LUMO, the values are available using ZINDO (low fidelity) and PBE0 as well as GW. For the

given data set, the latter two give approximately the same level of accuracy, so either can be taken as the high

fidelity data.

3. Multi-fidelity model

We are interested in solutions to electronic structure calculations, focusing on any general (scalar) quantity

of interest y(X), e.g., the ground state energy, as a function of inputs X that characterise the molecule, e.g., a

Coulomb matrix. To obtain a high-fidelity approximation yh(X) for y(X), we may use a method with a high

level of theory, while lower-fidelity approximations yl(ξ) can be obtained using low(er) levels of theory. The

multi-fidelity dataset takes the form {Xf ,yf}, where Xf ∈ RNf×l×m is a multi-dimensional array of inputs

Xn, n = 1, . . . , Nf , of size l × m and yf = (yf (X1), . . . , y
f (XNf

))T is a vector of Nf corresponding
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solutions at fidelity level f = l, h. We use f = h to denote the high fidelity and f = l the low fidelity data. In

line with the common setting for multi-fidelity emulation [? ? ], the high-fidelity training inputs are assumed

to be a subset of the low fidelity inputs, i.e., Xh ⊂ Xl.

The goal of this paper is to accurately approximate one or more quantities yh(X) from an high-fidelity

(high level of theory) electronic structure calculation by using data from the high-fidelity and corresponding

low-fidelity model. This is achieved through a combined feature engineering and deep learning approach.

In a first network, the inputs (Coulomb matrices) and eigenvalues as well as singular values of the input are

mapped to a multi-dimensional feature space, followed by a mapping from the feature space to the low-fidelity

output. In a second network, the low-fidelity prediction and scalar features obtained from the input and its

eigenvalues/singular values are mapped to the high fidelity output.

3.1. Feature enhanced deep learning for multi-fidelity electronic structure calculations: FEDMEC

We first introduce some basic terminology to aid the reader before presenting the architecture of the

proposed network. A dense layer of a network contains a specified number k of nodes/neurons, into which are

fed linear combinations of the l features xi emerging from the preceding layer. These linear combinations

(called activations ai) involve unknown weights wij connecting feature xi with node j. They undergo a

nonlinear transformation via an activation function f(·) (usually the same for each activation) to produce

outputs that are fed to the following layer. The entire operation and the output o can be written compactly as:

o = f(a) = (f(a1), . . . , f(ak))
T ; a = W1x (3)

in which the matrix W1 ∈ Rk×l contains the weights (to be learned during training), a = (a1, . . . , ak)
T

and x = (x1, . . . , xl)
T . Since the transformation connects every feature xi to to every neuron in the layer,

the layer is termed dense or fully-connected. A common form of regularisation is to randomly set some of

the outputs of the layer (dropout) by setting f(a) 7→ diag(r1, . . . , rk)f(a), in which diag(·, . . . , ·) denotes a

diagonal matrix and rj ∈ {0, 1}, j = 0, . . . , k, are independent samples from a Bernoulli distribution. This

operation is equivalent to removing those neurons j for which rj = 0.
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A convolutional layer acts in a quite different manner, and can involve a much smaller number of

unknown parameters. The input to a convolutional layer is a multidimensional (dimension ≥ 1) array, e.g.,

L ∈ RH×W×D of size size H ×W ×D, with entries Li,j,k. It is operated upon by a kernel (also called a filter

or window) of smaller size, e.g., K ∈ RF×F×D with entries Ki,j,k (which are unknown hyperparameters).

The so-called channel dimension D must be the same as that of the input. The convolution operation ∗ is

defined such that the m-th component of the result A = L ∗K is given by:

Al,m =

H∑
i=1

W∑
j=1

D∑
p=1

Ki,j,pLl+i−1,m+j−1,p (4)

The kernel essentially scans an F × F ×D segment of the input and the convolutions operation above takes

sums of element-wise products of the kernel and segment entries. The kernel moves through the image

repeating this process in an ordered manner and the number of locations by which the kernel shifts between

each scan is called the stride. Larger strides can be taken in order to produce smaller sized outputs from the

convolution operation. In the case of (4), a stride of 1 is used. In order to increase or preserve the size of the

convolution output in relation to the input, fibres of zeros can be spliced into the input, a process referred to as

padding. Typically, multiple kernels are employed, which can be in stacked in multidimensional array, e.g., N

kernels of size F × F ×D, yielding K ∈ RF×F×D×N .

The convolution result A is passed through an activation function to produce an output O = f(A). The

output is frequently subjected to pooling (also called downsampling) as a form of regularization, in which a

filter or kernel of a specified size scans segments of O to combine the entries in some manner, e.g., such as

taking the maximum value of the entries (max pooling) or average their values (average pooling).

The basic architectures of the proposed networks are illustrated in Figure ??. Precise details are provided

in the next section when the results are presented. Three features are selected for the input to series of

convolutional and dense layers to learn the selected low-fidelity output. To obtain the features, we first perform

an eigendecomposition of the Coulomb matrix C ∈ R23×23, namely, we solve:

Cv = λv (5)
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for the eigenvector/eigenvalue pairs vn, λn, n = 1, . . . , 23. In practise, the eigenpairs are obtained from a

singular value decomposition (SVD) of C rather than the direct eigendecomposition, since the SVD is more

stable numerically.

The eigenvalues are then passed through one or more dense layers (the final layer having m2 neurons) to

learn an m×m feature F1. Similarly, an m×m feature F2 is learned by passing the singular values
√
λn,

n = 1, . . . , 23 through one or more dense layers. The third m×m feature is learned by passing the Coulomb

matrix C through one or more convolutional layers followed by a dense layer after flattening with m2 neurons.

Each convolutional layer is followed by a max pooling layer.

The three m×m features are concatenated into a 3×m×m multi-dimensional array, which is fed through

one or more convolutional layers (the first layer is followed by a max pooling layer) and a final layer with

one neuron to predict the low fidelity output. The activation functions in all dense layers are the Parametric

ReLU (PReLU) function. In a second network, the eigenvalues and separately the singular values are passed

through one or more dense layers with a final layer containing a single neuron. The scalar features emerging

from these layers can then be spliced with the low-fidelity data to form a 3-dimensional array, which is then

passed through a series of dense layers. In all layers, the activation function is the PReLU. Both networks

were trained with the ADAM algorithm [? ].

We name this method Fidelity fusion for Electronic Structure Calculations Network (FESC-Net). In

section 4 we conduct simulations on the data set to demonstrate the superiority of FESC-Net over existing

state-of-the-art methods. AR, NAR and ResGP are briefly described in the Appendix. The precise details

(number of layers, neurons, kernels, strides, epochs, parameters associated with the learning algorithm) are

provide below. Next we analyse the complexity of FESC-Net.
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3.2. Complexity and Scalability

4. Experiments

We assess the performance of FESC-Net in three steps. We first illustrate the accuracy of the low-fidelity

prediction, compared to standard regression methods. This step allows for tuning of the first network (number

of layers, sizes of the layers, number of epochs, and other hyperparameters). We assess the performance of the

second network given low-fidelity information, i.e., with the exact low-fidelity data at hand (as required in

stochastic collocation) and compare to other multi-fidelity approaches. The second network is tuned during

this step. Finally, we assess and compare the performance of the combined networks forming FESC-Net to

predict high-fidelity data and compare to other approaches.
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4.1. Predictions of low-fidelity results with deep learning
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Figure 1: RMSE values for the low-fidelity predictions using SECNN, an MLP and a GP, based on different numbers of low-fidelity

training points. (a) HOMO, (b) LUMO, (c) polarizability.
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Figure 2: Experiment results of low-fidelity Predictions. (a) Comparisons of the root mean square error (RMSE) for FESC-Net, MLP, and

GP, with different amount of F1 training points. (b) Comparisons of RMSE at different training epochs for FESC-Net, MLP, and GP.

(c) Comparisons of RMSE for the put forward model using different combinations of features as input, to approximate F1 data. Here,

X denotes the origin input data; S denotes the singular value extracted from X. L denotes the eigenvalues extracted from X. (e.g. SL

represents that the model takes both singular value and eigenvalues as input data)
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Figure 3: Experiment results of low-fidelity Predictions. (a) Comparisons of the root mean square error (RMSE) for FESC-Net, MLP, and

GP, with different amount of F1 training points. (b) Comparisons of RMSE at different training epochs for FESC-Net, MLP, and GP.

(c) Comparisons of RMSE for the put forward model using different combinations of features as input, to approximate F1 data. Here,

X denotes the origin input data; S denotes the singular value extracted from X. L denotes the eigenvalues extracted from X. (e.g. SL

represents that the model takes both singular value and eigenvalues as input data)

We first approximate the relationship between the input matrix and the low-fidelity data using the first

network and compare it to a multi-layer perceptron (MLP) and a Gaussian process (GP) model. We used three

outputs with different combinations to test the methods thoroughly. The three outputs are: (i) HOMO (low

fidelity: Zindo; high fidelity: PBE0); (ii) LUMO (low fidelity: Zindo; high fidelity: GW); (iii) polarizability
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(low fidelity: SCS; high fidelity: PBE).

A range of architectures were tested to find the best performing network, which is now described in detail.

The eigenvalues and singular values were each passed through two dense layers, to map them to 6× 6 features.

In both cases, there are 23 input neurons, a hidden layer with 16 neurons and layers of size 36 containing the

features. The Coulomb matrix is passed through two convolutional layers: the first with 16 kernels of size

2 × 2, stride of 1, and a padding of 1 and the second layer with 1 kernel of size 3 × 3, a stride of 1, and a

padding of 1. The spliced 3× 6× 6 features are passed through 2 convolutional layers. The first layer has 16

kernels of size 3× 3× 3 with a stride and padding of 1. In the second layer there is one kernel of size 3× 3, a

stride of 1 and no padding. 50 epochs were found to be sufficient for training with a fixed learning rate of

0.001.

For the GP method, an ARD kernel was used together with a zero mean function (the data was centred)

taking as input the vectorised Coulomb matrix. The best performing MLP has five layers with an input layer

of size 529 = 23× 23, and subsequent layers of size 100, 25, 4 and 1. The number of epochs was 1 for the

HOMO data, 3 for the LUMO and 5 for the polarizability, since it suffered from overfitting beyond these

numbers, and the learning rate was fixed at 0.001. For each method, we conducted five tests with random

shuffling of data and show the range of errors obtained.

The number of low-fidelity training points was varied with a fixed number of 1081 test points. As can be

seen in Fig. 12(a) for the HOMO data, the FESC-Net method outperforms the MLP and GP model in terms of

the RMSE when the number of low-fidelity (F1) data points exceeds 1000. For the LUMO and polarizability

results in Figs. 12(b),(c), the FESC-Net RMSE is lowest at a smaller number of training points, especially in

the latter case in which it is the lowest for ca. 500 training points and higher. With an increasing number of F1

data points, there is a continuous decline in the RMSE, whereas the other methods fail to improve in the case

of the HOMO data. For the LUMO and polarizability, the MLP performance also improves, although not as

dramatically as that of FESC-Net. At 3000 training points, the RMSE for FESC-Net is ca. 10 %, 17% and

50% lower for the HOMO, LUMO and polarizability compared to the MLP, which is the second most accurate
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method, by a considerable margin compared to the GP in the last two cases.

For all three outputs, Figs. 12(b)-(c) shows the evolutions of the RMSE against the number of epochs for

the FESC-Net and MLP (the GP value will not change since it uses the training data only once in a maximum

likelihood estimate). In all cases, the MLP suffers from overfitting beyond a low number of epochs, whereas

FESC-Net continues to improve, which demonstrates that the FESC-Net is less prone corruption by noise in

the data than the MLP.

To demonstrate the significance of each added feature, an ablation study was conducted, with 6000 F1

training points. In terms of the specific network structure, we only need to change the number of channels

after feature concatenation if the number of features is reduced. There are 8 different combinations of the 3

features. For each combination, the model was run 5 times with training data selected randomly to ensure the

robustness of the results. The RMSE is plotted in Figs. 12(c)-(c), from which we see a decline in the median

RMSE as the number of features is increased. In the case of the polarisability, the median is marginally lower

using only the eigenvalues and Coulomb matrix, but the spread of errors is greater.

4.2. High-fidelity predictions with low-fidelity Information
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Figure 4: Experiment results of high-fidelity Predictions. (b) Comparisons of the RMSE for FESC-Net, MLP, GP and SC, with different

amount of F2 training points. (b) Comparisons of the RMSE at different training epochs for FESC-Net, MLP, GP, SC. (b) Comparisons of

RMSE for the put forward model using different combinations of features as input, to approximate F2 data. Here, S denotes the singular

value extracted from origin input data (X). L denotes the eigenvalues extracted from X. Yl denotes the low-fidelity(F1) data.

To predict the high-fidelity output given the low-fidelity result, the second network is employed as described
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Figure 5: Experiment results of high-fidelity Predictions. (b) Comparisons of the RMSE for FESC-Net, MLP, GP and SC, with different

amount of F2 training points. (b) Comparisons of the RMSE at different training epochs for FESC-Net, MLP, GP, SC. (b) Comparisons of

RMSE for the put forward model using different combinations of features as input, to approximate F2 data. Here, S denotes the singular

value extracted from origin input data (X). L denotes the eigenvalues extracted from X. Yl denotes the low-fidelity(F1) data.
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Figure 6: Experiment results of high-fidelity Predictions. (b) Comparisons of the RMSE for FESC-Net, MLP, GP and SC, with different

amount of F2 training points. (b) Comparisons of the RMSE at different training epochs for FESC-Net, MLP, GP, SC. (b) Comparisons of

RMSE for the put forward model using different combinations of features as input, to approximate F2 data. Here, S denotes the singular

value extracted from origin input data (X). L denotes the eigenvalues extracted from X. Yl denotes the low-fidelity(F1) data.

earlier. Both the singular values and eigenvalues are passed through three dense layers of sizes 10, 5 and 1 to

obtain scalar features, which are combined with the low-fidelity data point. The concatenated input is passed

through four fully-connected layers of sized 20, 20 and 10, with an output layer of size 1. The results are

compared with an MLP, a GP model and stochastic allocation (SC). The MLP consisted of four fully connected

layers of sizes 10, 20, 10, and 1, with an input layer of size 1, into which the low-fidelity output is fed. Both

networks were run with 50 epochs and a learning rate of 0.001. The GP model has the same structure as in the
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previous experiment but with a concatenated Coulomb matrix and low-fidelity output as the input. For each

method, we conducted five tests with random shuffling of data and averaged the errors.

We tested all methods with different numbers of high-fidelity data points (equal to the number of low-

fidelity data points). The number of test data points is fixed at 1081. As can be seen in Figs. 6(a)-(c), the

proposed network outperforms all other methods in terms of the RMSE when the number of training data

points exceeds around 200, with a continual decline as the number of data points is increased. The shaded

regions show the spread of errors over the 5 tests. The accuracy gains decline from HOMO to LUMO to

polarizability, from around ca. 25 % to ca. 15 % for more than 3000 training points. Figs. 6(a)-(c) show the

progress during training (number of epochs) for all methods. The MLP reaches its minimum error after only a

small number of epochs, while the proposed network continues to improve.

As with the previous network, an ablation experiment was conducted, with 6000 low-fidelity and high-

fidelity training points and 1081 test points. For each of the eight combinations of features we ran the model 5

times and the results are plotted in Figs. 6(c)-(c), from which we see a decline in the RMSE as the number of

features is increased, for the HOMO and LUMO, with a less discernible pattern for the polarisability. This

demonstrates the value of including the additional features.

4.3. Pure Data-driven High-Fidelity Predictions

In this section we assess the performance of the full FESC-Net model, and compare it to an MLP, AR, NAR

and ResGP. For AR, NAR, and ResGP, we used our own Emukit toolkit (source code:https://github.com/EmuKit/emukit),

with the inputs taken to be the vectorised Coulomb matrix. The MLP methods uses the two MLPs described in

the previous two subsectionFor each method, we conducted five tests with random shuffling of data.

We first set the number of low and high fidelity training points equal and vary this number, with 1081

test points. The performance of each method can be seen in Fig 13(a), which shows a clearly lower RMSE

for FESC-Net compared to the other methods when there are more than 1000 training points. For lower

numbers of training points, the GP based methods are superior to both network models. This is consistent with

the general rule that network models require large data sets to work well. As the number of training points
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increases, FESC-Net continues to improve, whereas the other methods show a negligible decline in the RMSE.

At 3000 low-fidelity training points, FEMMEC is approximately 10% more accurate than all other methods.
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Figure 7: Experiment results of pure data-drive high-fidelity predictions. (a) Comparisons of the RMSE for FESC-Net, simple MLP and 4

state-of-the-art methods with different amount of F1 data, and the number of F1 data is twice that of F2 data. (b) Comparisons of the

RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is 2 times

that of F2 data. (c) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data,

and the number of F1 data is 3 times that of F2 data. (d) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art

methods with different amount of F1 data, and the number of F1 data is 4 times that of F2 data.
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Figure 8: Experiment results of pure data-drive high-fidelity predictions. (a) Comparisons of the RMSE for FESC-Net, simple MLP and 4

state-of-the-art methods with different amount of F1 data, and the number of F1 data is twice that of F2 data. (b) Comparisons of the

RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is 2 times

that of F2 data. (c) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data,

and the number of F1 data is 3 times that of F2 data. (d) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art

methods with different amount of F1 data, and the number of F1 data is 4 times that of F2 data.
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Figure 9: Experiment results of pure data-drive high-fidelity predictions. (a) Comparisons of the RMSE for FESC-Net, simple MLP and 4

state-of-the-art methods with different amount of F1 data, and the number of F1 data is twice that of F2 data. (b) Comparisons of the

RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is 2 times

that of F2 data. (c) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data,

and the number of F1 data is 3 times that of F2 data. (d) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art

methods with different amount of F1 data, and the number of F1 data is 4 times that of F2 data.

In practise, the advantage of multi-fidelity methods is that fewer high fidelity results are required, compared

to the low-fidelity results. We examined, therefore, the effect of the ratio of high- to low-fidelity training points.

13(b)(c)(d) shows the RMSE for a ratio of 1:2, and 1:4, respectively. The number of test points is1081. These

results show that FESC-Net continues to be superior for low-fidelity training point number over 1000, with a

similar pattern in the decline in the RMSE as the number of low-fidelity training points increases.

We compare the performance of FESC-Net trained with different amount of F1 and F2 data in Fig 10(b).

The RMSE performance is rather steady though the amount of F2 train data is increasing. In addition, the

training time of our method is significantly shorter than that of LAR, and NAR, which is plotted in Fig 10(a).

This means lower computational costs. When compared to other methods, our method consumes similar

running time but achieves better results on RMSE.
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Figure 10: Experiment results of pure data-drive high-fidelity predictions. (a) Comparisons of the training time for FESC-Net, simple MLP

and 4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is 4 times that of F2 data. (b) Comparisons of

the RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is 4

times that of F2 data.

4.4. Other Data Sets

We changed the data set of high and low fidelity and conducted the above experiment again. The

experimental results are as follows:

4.4.1. low-fidelity:Zindo lumo high-fidelity: Gw homo

Predictions of low-fidelity results with deep learning.
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Figure 11: Experiment results of low-fidelity Predictions. (a) Comparisons of the root mean square error (RMSE) for FESC-Net, MLP,

and GP, with different amount of F1 training points. (b) Comparisons of RMSE at different training epochs for FESC-Net, MLP, and GP.

(c) Comparisons of RMSE for the put forward model using different combinations of features as input, to approximate F1 data. Here,

X denotes the origin input data; S denotes the singular value extracted from X. L denotes the eigenvalues extracted from X. (e.g. SL

represents that the model takes both singular value and eigenvalues as input data)

High-fidelity predictions with low-fidelity Information.
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Figure 12: Experiment results of low-fidelity Predictions. (a) Comparisons of the root mean square error (RMSE) for FESC-Net, MLP,

and GP, with different amount of F1 training points. (b) Comparisons of RMSE at different training epochs for FESC-Net, MLP, and GP.

(c) Comparisons of RMSE for the put forward model using different combinations of features as input, to approximate F1 data. Here,

X denotes the origin input data; S denotes the singular value extracted from X. L denotes the eigenvalues extracted from X. (e.g. SL

represents that the model takes both singular value and eigenvalues as input data)

Pure data-driven high-Fidelity predictions.
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Figure 13: Experiment results of pure data-drive high-fidelity predictions. (a) Comparisons of the RMSE for FESC-Net, simple MLP and

4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is twice that of F2 data. (b) Comparisons of the

RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data, and the number of F1 data is 2 times

that of F2 data. (c) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art methods with different amount of F1 data,

and the number of F1 data is 3 times that of F2 data. (d) Comparisons of the RMSE for FESC-Net, simple MLP and 4 state-of-the-art

methods with different amount of F1 data, and the number of F1 data is 4 times that of F2 data.
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Supplementary Material

A. Univariate Gaussian process models

A GP model is based on a prior distrubution y(x) ∼ GP(y(x) | m(x), k(x,x|θ)) over an unknown

function y(x), with mean and covariance functions m(x) and k(x,x|θ), respectively, containing hyperpa-

rameters θ. Here, y is a scalar function and x is any vector-valued input. Any finite set of function values

on X = [x1, . . . ,xN ]T , namely Y = [y(x1), . . . , y(xN )]T , follows a multivariate Gaussian distribution:

Y ∼ N (Y |m,K+σ2I), in which m = [m(x1), . . . ,m(xN )]T is the mean vector and K = [k(xi,xj |θ)]ij ,

i, j = 1, . . . , N , is the covariance matrix.

The mean function is usually considered to be identically zero, after centering the data. The term σ2I

accounts for numerical error with variance σ2 or model inadequacy. Data from a deterministic simulator

is normally considered noise free but σ2I is often included as a regularization term such that the inversion

of (K + σ2I)−1 (see below) is not ill-conditioned [? ? ]. Choosing the right kernel function for a specific

application is non-trivial. When there is no prior knowledge to guide the choice, the automatic relevance

determinant (ARD) kernel:[? ]

k(xi,xj |θ) = θ0 exp
(
−[xi − xj ]diag(θ1, . . . , θl)[xi − xj ]

T
)
, (A-1)

with θ = [θ0, . . . , θ1]
T , is often used. The ARD kernel can freely capture the influence of each individual input

(coordinate of x) on the output. The hyperparameters {τ,θ} can be estimated by maximizing the log-marginal

likelihood:

L =
1

2
ln|K+ σ2I|−1

2
YT (K+ σ2I)−1Y − N

2
ln(2π). (A-2)

The main computational cost is the inversion of K, which isO(N3) andO(N2) for time and space complexity,

respectively. We can derive the predictive posterior as a function of x using conditioning rules for Gaussian
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distributions [? ]:

y(x) ∼ N (y(x) | µ(x), v(x))

µ(x) = k(x)T (K+ σ2I)−1Y,

v(x) = k(x,x|θ)− k(x)T (K+ σ2I)−1k(x),

(A-3)

where k(x) = [k(x,x1), . . . , k(x,xN )]T is the vector of covariances between y(x) and the training data Y.

B. Autoregression models based on GPs

Consider a multi-fidelity problem for univariate data, that is {Xf ,Yf}Ff=1, where Yf = [yf (x1), . . . , y
f (xNf

)]T ∈

RNf is a collection of samples at fidelity f . The condition Xf ⊂ Xf−1 is required. The general autoregressive

formulation for multi-fidelity data is:

yf (x) = gf
(
yf−1(x)

)
+ εf (x), (B-1)

where gf
(
yf−1(x)

)
is an arbitrary function that maps the low-fidelity results to the high-fidelity results and

εf (x) (assumed to be Gaussian) is an error term. If we assume a simple linear form for the mapping, i.e.,

gf (yf−1(x)) = c · yf−1(x) for some constant c, we recover the classic autoregressive model put forth by ? ].

? ] proposed the nonlinear autoregression (NAR) formulation by placing a GP prior over the function gf . To

further enhance the model at each fidelity level, Eq. (B-1) is modified as follows:

yf (x) = gf
(
x, yf−1∗ (x)

)
, (B-2)

in which εf (x) has been absorbed into gf , and yf−1∗ (x) is the true function value for x at fidelity f − 1. This

complicated model structure is then simplified using a separable covariance kf for the GP over gf (x, yf−1∗ (x)):

kf
(
x,x′, yf−1∗ (x), yf−1∗ (x′)

)
= kfξ (x,x

′) · kfy
(
yf−1∗ (x), yf−1∗ (x′)

)
, (B-3)

where kfξ and kfy are valid covariance functions, each with their own hyperparameters. The low fidelity

resolution then becomes the input for the high-fidelity GP model, which leads to a concatenating GP structure

known as the deep GP [? ? ]. As suggested in [? ? ], since each fidelity solution is directly treated as the
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observable latent variable of a deep GP, the model can be trained efficiently by training each fidelity level

GP fully independently, as in Eq. (A-2), with the concatenated inputs. However, the forward model, i.e., the

predictive posterior at each fidelity f for a test input x∗ is given by:

yf (x∗) =

∫
gf
(
x, yf−1∗ (x)

)
dyf−1∗ (x), (B-4)

where gf (x, yf−1∗ (x)) is a Gaussian predictive posterior with mean and variance given by expressions similar

to those in Eq. (A-3). This posterior in general does not have a closed-form solution and requires expensive

sampling methods to derive an approximation.

C. Residual Gaussian process model (ResGP)

Again, data {Xf ,Yf}Ff=1, where Yf = [yf (x1), . . . , y
f (xNf

)]T ∈ RNf , is available and Xf ⊂ Xf−1.

Rather than employing the concatenating structure of NAR, in ResGP the high-fidelity GP is decomposed as:

yf (x) = r1(x) + · · ·+ rf (x) =

f∑
k=1

rk(x), (C-1)

for residual functions rk(x) = yk(x) − yk−1(x) for fidelities k = 2, . . . , F and with r1(x) = y1(x). An

independent GP prior rf (x) ∼ GP(rf (x) | 0, kf (x,x′|θf ) + (σf )2) is placed over each residual function,

leading to:

yF (x) ∼ GP

yF (x) | 0, F∑
f=1

kf (x,x′|θf ) + (σf )2

 , (C-2)

by virtue of the independence assumption. At the lowest fidelity, inputs X1 and outputs Y1 along with Eq.

(A-2) are used to learn {σ1,θ1} and therefore obtain the predictive posterior for r1(x) as in Eq. (A-3). The

inputs X2 and outputs R2 := Y2−Y1
e2∩e1

(in which e2 ∩ e1 selects those outputs at fidelity 1 corresponding

to the inputs X2 ⊂ X1) are then used to estimate {σ2,θ2}, and obtain the predictive posterior for r2(x). The
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procedure can repeated up to fidelity F , and the result can be written compactly as:

yF (x) ∼ N
(
yF (x)

∣∣ µF (x), vF (x))
µF (x) =

F∑
f=1

kf (x)T (Kf + (σf )2I)−1Rf ,

vF (x) =

F∑
f=1

[kf (x,x|θf )− (kf (x))T (Kf + (σf )2I)−1kf (x)],

kf (x) = [kf (x,x1|θf ), . . . , kf (x,xNf
|θf )]T ,

(C-3)

Here Rf := Yf −Yf−1
ef∩ef−1

(in which ef ∩ ef−1 selects those outputs at fidelity f − 1 corresponding to

the inputs Xf ⊂ Xf−1), [Kf ]ij = kf (xi,xj |θf ) is the f fidelity covariance matrix and kf (x) is a vector of

covariances between rf (x) and the data Rf .

D. Stochastic collocation

25


	Introduction
	Data sets
	Multi-fidelity model
	Feature enhanced deep learning for multi-fidelity electronic structure calculations: FEDMEC
	Complexity and Scalability

	Experiments
	Predictions of low-fidelity results with deep learning
	High-fidelity predictions with low-fidelity Information
	Pure Data-driven High-Fidelity Predictions
	Other Data Sets
	low-fidelity:Zindo lumo high-fidelity: Gw homo

	Univariate Gaussian process models
	Autoregression models based on GPs
	Residual Gaussian process model (ResGP)
	Stochastic collocation


