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Abstract—Yield optimization is one of the central challenges
in submicrometer integrated circuit manufacture. However, yield
optimization is computationally expensive due to intensive yield
estimation and intractable optimization processes. In this work,
we first reinvent the state-of-the-art all sensitivity adversarial
importance sampling (ASAIS) yield optimization from a Laplace
approximation perspective, which also reveals its limitations
and suggests improvements. We then generalize it with infinite
components and discover the key ingredient in yield optimization
to be an effective proposal distribution transfer (OPT) procedure,
which is captured using conditional normalizing flow (CNF). To
deliver a reliable yield optimization pipeline that accounts for
the uncertainty due to the lack of data, we propose sequential
ensemble, the first empirical uncertainty estimation that enables
tractable Bayesian yield optimization without introducing an extra
surrogate for the first time. We conduct extensive experiments
against five state-of-the-art baselines and show that the proposed
method delivers superior performance: a speedup of 1.01x-11.94x
(5.57x on average) with higher yield designs, and most impor-
tantly, excellent robustness and consistency in all our experiments
on analog and SRAM circuits.

Index Terms—Yield Estimation, Yield Optimization, Impor-
tance Sampling, Conditional Normalizing Flow,

I. INTRODUCTION

As the technology of integrated circuits develops, microelec-
tronic devices shrink their scale to nano-meter, which leads
to severe process variance, e.g., doping fluctuation, intra-die
mismatches, and threshold voltage variation. This will cause
the performance of the circuits to deviate from the nominal
design and even fail to meet the specifications, especially in
the fields of analog and mixed-signal CMOS circuits [1], [2].
It is thus crucial to design nominal circuits that not only satisfy
electronic specifications but are also robust against fabrication
process variations, which forms the yield optimization problem.
Yield optimization is challenging because it requires a large
number of simulations to estimate the yield of a given design,
and also the derivative of the yield w.r.t. the design parameters
is not available.

A successful yield optimization generally requires an accu-
rate and efficient yield estimation as an inner loop, which has
been extensively studied in the literature. The golden standard
for yield estimation is the Monte Carlo (MC) method, which is
still widely used in practice due to its reliability. Nonetheless,
MC is extremely inefficient as it requires tens of thousands of
circuit simulations to achieve reasonable accuracy. For instance,
a yield of 99.9999% requires a minimum of 107 simulations,
which is infeasible in practice.
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Importance sampling (IS) based methods aim to reduce the
variance of the MC estimator by sampling more from the
failure regions. With the foundation laid by optimal mean
shift vector (OMSV [3]), IS-based methods have become
an important branch for yield estimation, due to their high
efficiency and, most importantly, reliability and robustness. To
further improve OMSV, [4] proposes an adaptive importance
sampling (AIS) to update the shifted distribution as more
samples are collected. To deal with high-dimensional space,
adaptive clustering sampling (ACS [5]) samples from multiple
regions clustered by multi-cone clustering and sequentially
updates its proposal distribution. AIS is further enhanced by
[6] by introducing a mixture of von Mises-Fisher distributions
to replace the standard normal distribution.

Another important branch of yield estimation methods is
surrogate-based yield estimation, which builds a surrogate/meta
model to predict the performance metric given any varia-
tional and design parameters. [7] puts forth a low-rank tensor
approximation to the polynomial chaos expansion (PCE) to
approximate the performance function. [8] instead uses the
Gaussian process (GP) with features selection to deal with
high-dimensional problems. Based on GP, [9] proposes an
entropy reduction active learning for efficiency improvement.

With an efficient yield estimation in hand, one can now
optimize the yield with gradient-free optimization such as
Bayesian optimization (BO). Keep in mind that our goal is
yield optimization instead of accurate yield estimation. It might
not be wise to spend too much effort (computational budget) on
an accurate yield estimation for an obviously low-yield design.
Such a philosophy is also shared by [10], which proposes
a heuristic two-stage MC yield estimation and BO for yield
optimization (WEIBO). This framework is further improved by
[11] by replacing the weighted acquisition function with a max-
value entropy search to better explore the design parameters
space (MESBO). In [12], the min-norm failure vector (MNFV)
is proposed to optimize the yield by increasing the overall
distance from the failure boundary based on IS-based yield
estimation. [13] combines a gradient-free optimizer routine
with its yield estimated on a kernel density estimator and BO
(KDEBO).

Despite their efficiency and success, a combination of IS-
based yield estimation and BO for yield optimization is ad-hoc
and requires careful tuning of many intermediate hyperparam-
eters, making it less attractive outside the research community.
To address this issue, one can remove either component.
All sensitivity adversarial importance sampling (ASAIS [14])
removes BO in the pipeline by directly optimizing the OMSV,
obtained from OMSV yield estimation, using sensitivity analy-



sis. Due to its simplicity and reliability of IS, ASAIS is highly
efficient and robust. The major limitation is that it can be
inaccurate (see Fig. 1) due to the simple assumption embedded
in OMSV. Other limitations include the lack of full knowledge
sharing between similar designs and the large variance of
the optimization process due to the lack of consideration of
uncertainty.

These limitations are addressed by Bayesian yield analysis
(BYA [9]), which removes the yield estimation and directly
incorporates the design and variational parameters into a GP to
predict performance metrics. The yield optimization and yield
estimation are unified into a single framework and conducted
jointly to achieve maximum efficiency with active learning.
However, as the no free lunch theorem suggests, the surrogate
model itself can become computationally expensive; also, the
yield optimization quality can be compromised if the surrogate
is not accurate enough, leading to misleading optimal design.

To bridge the gap between IS and surrogate methods, we
propose a novel optimal proposal transfer (OPT) framework by
1) revealing the connection between IS and surrogate methods
under a novel statistical perspective, 2) introducing conditional
normalizing flow (CNF) based OPT, and 3) equipping OPT
with BO. The novelty of this work is as follows,

1) We derive a novel statistical perspective for IS-based
yield optimization, which reveals the limitations of the
ASAIS and a link between IS and surrogate methods.

2) We propose a CNF-based OPT. It combines the advan-
tages of IS and surrogate methods and provides efficient
and robust yield optimization with effective knowledge
transfer, which is validated through a joint yield estima-
tion experiment on real circuits.

3) We propose sequential ensemble, the first empirical
uncertainty quantification tailored for yield problem.
Combined with OPT, it enables efficient Bayesian yield
optimization without the need for an extra surrogate for
the first time.

4) Based on our extensive experiments of different circuits,
OPT achieves remarkable optimization in almost all cases
consistently, with an average speedup of 5.57x (up to
11.94x) and optimal yield improvement of 705x (up to
6,367x) compared with the state-of-the-art (SOTA) yield
optimization methods.

II. BACKGROUND

A. Problem Definition

Let x = [x1, x2, · · · , xdx
]T ∈ X denote a vector containing

all the design parameters, e.g., transistor widths and lengths,
resistance values, capacitance values, and bias voltages and
currents, whereas X indicates the feasible design parameters
space with bounds specified by the circuit designers. The
inevitable random variations of a manufacturing process are
assumed fully captured by the variational parameters, denoted
as v = [v1, v2, · · · , vdv

]T ∈ V . After normalization, v is
considered independent Gaussian distributed, i.e., p(vi) =
exp

(
−v2i /2

)
/
√
2π. The circuit performance metrics y can be

considered as a function y = f(x,v). When all metrics can
meet the predefined criteria y0, e.g., y ≤ y0, the circuit with

the corresponding parameters [x,v] is considered a qualified
design. For a certain design x, the circuit yield g(x) is defined,

g(x) ≜
∫
V

I(x,v)p(v)dv, (1)

where I : X ×V → {0, 1} is the indicator function of whether
all performance metrics fail the predefined criteria. The yield
optimization problem is then formulated as

x∗ = argmax
x∈X

g(x), (2)

where x∗ is the optimal design subject to the random variations
v. Yield optimization is equivalent to failure rate minimization,
which we use in this work, i.e., g(x) is the failure rate and
I(x,v) = 1 if the design fails. The challenge here is twofold.
First, the computation of the failure rate g(x) requires a large
number of simulations to evaluate the integral Eq. (1), and,
second, the derivative ∇xg(x) is not available.

B. Monte Carlo and Importance Sampling Yield Estimation

Estimation of g(x) is known as yield estimation, which is
commonly achieved using MC. It samples M vi from p(v)
and evaluates the failure rate by the ratio of failure samples to
total samples, ĝ(x) ≈ 1

M

∑M
i=1 I(x,vi). To obtain an estimate

of 1 − ε accuracy with 1 − δ confidence, N ≈ log(1/δ)
ε2ĝ(x) is

required. For a modest 90% accuracy (ε = 0.1) with 90%
confidence (δ = 0.1), we need N ≈ 100/g(x) samples, which
is infeasible in practice for a small g(x), says, 10−8. We can
also see this intuitively from the fact that it requires 1/g(x)
samples on average just to observe a failure event.

Instead of drawing samples from p(v), the IS methods draw
samples from a proposal distribution q(v) and estimate

g(x) =

∫
V

I(x,v)p(v)

q(v)
q(v)dv ≈ 1

N

N∑
i=1

I(x,vi)p(vi)

q(vi)
,

(3)
where vi are samples drawn from q(v). If q(v) is chosen prop-
erly, the variance of the estimator can be reduced significantly,
i.e., fewer samples are required to achieve the same accuracy.

One of the fundamental works in IS for yield estimation is
OMSV [3], which shifts the mean of original distribution p(v)
to the smallest passing sample µ∗,

µ∗ = argmin ||v||2 s.t. I(x,v) = 1, (4)

where ||v||2 =
∑D

d=1 v
2
d is the Euclidean norm. OMSV only

considers yield estimation, and thus x is assumed fixed.

C. Bayesian Yield Optimization

To conduct optimization on unknown g(x), BO place a
GP prior g(x)|θ ∼ GP (m(x), k(x,x′|θ)) , with mean m(x)
and covariance functions k(x,x′|θθθ). Based on the yield esti-
mation of g(xi) subject to some errors, the hyperparameters
θ are estimated by maximum likelihood estimate (MLE) of
the likelihood function p(y|θθθ), a joint Gaussian distribution.
Conditioning on y, we can derive the predictive mean ḡ(x)
and variance υ̂(x) for any x. We can approach the optimal
by exploring the areas with higher uncertainty towards the
minimum

argmin
x∈X

(ḡ(x)− βυ̂(x)) , (5)



where β tunes the balance between exploration and exploita-
tion. This is known as the upper confidence bound (UCB)
[15], which is simple and easy to implement yet powerful
and effective. Other acquisition functions include max-value
entropy search (MES) and predictive entropy search.

III. PROPOSED APPROACH

A. Optimal Proposal Distribution in IS

The crucial step in yield optimization is an accurate and
efficient estimation of g(x), which entails a good x dependent
proposal distribution q(v|x). From Eq. (3), we can see that the
optimal proposal distribution q∗(v|x) is the one that minimizes
the approximate variance given by the Delta method, i.e.,

q∗(v|x) = argmin
q

Eq

[
w2(v|x) (I(x,v)− g(x))

2
]
, (6)

where w(v|x) = p(v)/q(v|x) is the x dependent importance
weight. Utilizing Lagrange multiplier rule for calculus of
variations, the optimal proposal distribution is given by

q∗(v|x) = p(v)I(x,v)/g(x). (7)

To derive a tractable solution, we can take a Laplace approx-
imation of q∗(v|x), which is a Gaussian distribution centered
at µ̂(x) with covariance S(x), both of which are x dependent.
The center µ̂(x) is the mode of p(v)I(x,v), which can be
obtained by solving the following optimization problem

µ̂(x) = argmax
v

log p(v)I(x,v). (8)

Since p(v) is a standard normal distribution and monotonically
decreases with ||v||2 and I(x,v) = {0, 1}, the maximization
in Eq. (8) is equivalent to the minimization of ||v||2, i.e.,

µ̂(x) = argmin
v

||v||2 s.t. I(x,v) = 1. (9)

Thus, for a given x, µ̂ is obtained for the smallest v that
satisfies I(x,v) = 1, exactly the solution in OMSV of Eq. (4).
Once we have µ̂(x), we can solve S(x) by solving the
following optimization problem

S(x) = −∇2
v log (p(v)I(x,v))

∣∣
v=µ̂(x)

, (10)

which is ill defined since I(x,v) is not differentiable at v =
µ̂(x). But if we take derivative at side where I(x,v) = 1, we
can get the analytical solution

S(x) = I, (11)

where I is the identical matrix. Based on the assumption that
the Laplace approximation q∗(v|x) is sufficiently close to the
true distribution p(v|x), the yield will be proportional to the
OMSV µ̂(x) and the yield optimization in Eq. (2) becomes

x∗ = argmax
x

||µ̂(x)||2. (12)

This is a novel statistical framework providing a theoretical
foundation for ASAIS, which has shown great success in yield
optimization with excellent efficiency and accuracy.

More importantly, this framework allows us to see the
main issues of ASAIS—it seeks only the closest single failure
region and ignores other failure regions, leading to inferior
performance in practice. For instance, in Fig. 1, ASAIS will
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Fig. 1: An illustrating example of OMSV and why ASAIS fails.
Design (a) has a smaller OMSV but a higher yield than (b).
However, ASAIS determines the yield based on the length of
the OMSV and will choose (b) as a higher yield design.

choose the wrong design that has a lower yield due to the non-
convex failure region. Such an issue will become severe as the
dimensions increase. We will also show this phenomenon in
practical experiments later. Another issue of ASAIS is that the
OMSV µ̂(x) is computed independently for each x, without
knowledge sharing between similar designs.

B. Optimal Proposal Distribution

To resolve these challenges, we increase the number of
OMSVs to infinite to achieve a better coverage of failure
regions. Let us equip an x dependent infinite mixture of
Gaussian to our proposal distribution

q(v|x) =
M∑
i=1

αiN (v − µi(x), sI), (13)

where αi is the weight and M → ∞. Now the simple Laplace
approximation is not sufficient to optimize q(v|x). Instead, we
introduce more advanced variational inference techniques to
approximate the optimal proposal distribution, i.e., minimiza-
tion of the KL divergence between the mixture distribution and
the optimal proposal distribution KL(q∗(v|x)||q(v|x)) =

Eq∗(v|x) [log q
∗(v|x)]− Eq∗(v|x) [log q(v|x)] , (14)

where Eq∗(v|x) [log q
∗(v|x)] is a constant of the entropy of

the optimal proposal distribution. Minimization of the KL
divergence is equivalent to maximizing Eq∗(v|x) [log q(v|x)],
which is the lower bound of the optimal solution. We now aim
to optimize

argmax
{µi,αi}M

i=1

∫
p(v)I(x,v)

g(x)
log

(
M∑
i=1

αiN (v − µi, sI|x)

)
dv.

(15)
The complete solution to Eq. (15) might seem complicated
at first glance. But we can see that to get the maximum, the
main volumes of the Gaussian components (corresponding to
a large αi) should be placed beyond the failure boundaries
B(v|x) = ∂I(x,v)/∂v ̸= 0. Thus, optimization of the
proposal distribution is equivalent to implicitly finding the
whole failure boundary (vs. an optimal shift vector in ASAIS)
in the variational parameters space.

This finding reveals the connection between IS and
surrogate-based methods (e.g., BYA [9])—both methods seek
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Fig. 2: Conditional Normalizing Flow

the failure boundaries B(v|x) to success. The surrogate does
this explicitly by approximating I(v|x), leading to higher
efficiency but lack of robustness—if I(v|x) is not accurate
enough, the yield estimation and optimization will be mislead-
ing. In contrast, optimal IS does this implicitly by updating the
proposal distribution q(v|x) with random samples and might
lack some efficiency, but it will not be trapped in local minima
and will always converge. It is thus a more reliable method
for practical use. The key to successful yield optimization is
to combine both, i.e., embedding the B(v|x) knowledge in the
proposal distribution.

C. Conditional Normalizing Flows As Proposal Distribution

To this end, we replace the mixture of Gaussian distributions
of Eq. (13) with the SOTA deep learning-based distribution ap-
proximation, conditional normalizing flow [16] to approximate
q∗(v|x). CNF is a modification of the generic normalizing flow
(NF) [17], which has shown great success in modeling complex
distributions by harnessing the power of modern deep learning
and massively parallel computing hardware (e.g., GPU). It
is capable of approximating any complex distributions condi-
tioned on some parameters (in our case, the design parameters
x).

The key idea of CNF is to introduce a conditional network
that modulates the parameters of the invertible transformations
based on the given conditions. More specifically, CNF defines a
series of invertible transformations (e.g., affine transformations
and non-linear functions) f1, f2, ..., fk, each of which is condi-
tioned on x (see Fig. 2 for an illustration). In our case, we aim
to approximate the optimal proposal distribution q∗(v|x), and
we choose Neural Spline Flows (NSF) [17] as our invertible
transformations. The conditional density q(v|x) is obtained by
applying changes of variables for a simple base distribution
p(z),

v ≜ zK = fK ◦ fK−1 ◦ · · · ◦ f1 (z0; γ,x) , (16)

where z0 is a sample from p(z), zK is the final output after
the flow transformations, γ are parameters controlling the flow,
and x is the conditional variable.

Training for CNF is straightforward by MLE on samples
generated from the target distribution. In our case, these are
samples that satisfy I(vi,xj) = 1. The Jacobian of each flow
transformation fk is used to compute the log-likelihood:

L = log p (z0)−
K∑

k=1

log

∣∣∣∣∂fk (zk−1; γ,x)

∂zk−1

∣∣∣∣ . (17)

The parameters γ are updated using stochastic gradient descent,
with the gradients easily computed via chain rules.

Through the forward and inverse transformations, we can
generate high-quality samples from approximated q∗(v|x),

validate these samples, estimate the yield, and update the
CNF to get better approximate to q∗(v|x). Another major
advantage of CNF is that the underlying knowledge of I(x,v)
is implicitly encoded in the conditional distribution q∗(v|x),
which suggests that the knowledge between different designs
can be learned by CNF. Meaning that an optimal proposal
learned from one design can be used to approximate the optimal
proposal for another design. We will show the effectiveness of
this knowledge transfer in a joint yield estimation task in later
experiments.

D. Gradient-based OPT Yield Optimization

Another huge advantage of the CNF is that the derivative
w.r.t x is directly available using chain rules. This allows us to
directly optimize the yield by gradient-based methods without
the need for another surrogate model (e.g., in WEIBO and
MESBO) or a simplification of our target function (e.g., in
ASAIS). Given a trained CNF q(v|x), the yield g(x) can be
estimated by

ĝ(x) ≈ 1

N

N∑
i=1

I(x,vi)p(vi)

q(vi|x)
≈ 1

N

N∑
i=1

p(vi)

q(vi|x)
. (18)

We can make this approximation because the CNF is trained
to approximate the optimal proposal. If that is the case, for
all samples vi from q(v|x), I(x,vi) is always 1 and the
approximation is exact. In practice, that is not the case and the
approximation is biased. However, that is sufficient to guide us
to move to the next design points for yield optimization. We
do not expect our method to reach the optimal design in one
step. At the next design point x′, q(v|x′) will propose more
samples, which are then passed to a SPICE-based indication
I(x′,v) for validation, and the failure samples are collected
to update the CNF about the failure boundary for design x′

and, most importantly, through the knowledge transfer, about
the whole design parameters space. As more data is collected,
the CNF refines itself and further approximates the optimal
proposal q∗(v|x), leading to a better estimation of g(x) and
a more accurate gradient of the yield w.r.t x. Based on the
estimation of Eq. (18), the gradient of the estimated yield w.r.t
x is given by

∇xĝ(x) = − 1

N

N∑
i=1

p(vi)∇x log q(vi|x)
(q(vi|x))2

, (19)

where ∇x log q(vi|x) is the gradient of the CNF w.r.t x and
is easily computed using chain rules. The gradient-based OPT
yield optimization is summarized in Algorithm 1.
E. Uncertainty Quantification Using Sequential Ensemble

Despite that the gradient-based OPT yield optimization is
able to find the optimal design x∗ given sufficient compu-
tational budget, the uncertainty of the yield estimation ĝ(x)
introduced by the CNF and lack of data is not well quantified,
leading to a large variance of the optimization.

A commonly used method for quantifying the uncertainty
of deep learning is the deep ensemble, which aggregates the
predictions of an ensemble of models that are trained using
different random initializations or hyperparameters. Despite its
success, the deep ensemble method does not apply to our
problem well because it accounts for uncertainty due to the



Algorithm 1 Gradient-based OPT Yield Optimization

Require: SPICE-based Indication I(v,x), N , Niter

1: Generate a random design x0 and N random samples vj

2: Pass {vj ,x0}Nj=1 to SPICE-based indication I(vj ,x0) to
get failure samples D = {vj ,x0}N

′

j=1(N
′ ≤ N)

3: for i = 1 to Niter do
4: Update CNF q(v|x) with dataset D
5: Optimize estimated yield ĝ(x) of Eq. (18) with its

gradient in Eq. (19) to get optimal design x∗
i

6: Generate N samples vj from q(v|x∗
i ).

7: Pass vj to the circuit SPICE-based indication I(vj ,x
∗
i )

to get failure samples Di = {vj ,x∗
i }N

′

j=1(N
′ ≤ N)

8: Update dateset D = D ∪Di

9: end for
10: return x∗

i

model initializations or hyperparameters instead of the lack of
data, which is the main source of uncertainty in yield.

Inspired by the figure of merit (FOM) concept that is used to
determine the convergence of a yield estimation, we propose a
sequential ensemble method to quantify the uncertainty of the
yield estimation ĝ(x). The key idea of the sequential ensemble
is to keep the latest R models of the CNF and use them to
estimate the uncertainty due to the lack of data as in FOM.
More specifically, at j iteration of the optimization, a copy
of the CNF, qj(v|x) is saved before its update. Then, the
uncertainty of the yield estimation ĝ(x) is estimated as the
standard deviation υ̂(x) of the yield estimation ĝ(x) using these
R models, i.e.,

υ̂(x) = (
1

R

j∑
r=j−R

(ĝr(x)− ḡ(x))2)1/2, (20)

where ĝr(x) is the yield estimation based on CNF at r iteration
based on Eq. (18) and ḡ(x) is the mean of the yield estimation
using the R models.

ḡ(x) =
1

NR

N∑
i=1

j∑
r=j−R

p(vi)

qr(vi|x)
. (21)

F. Bayesian OPT Yield Optimization

Once we obtain the mean and standard deviation by the se-
quential ensemble, we can perform the yield optimization based
on BO of Eq. (5). More specifically, for yield optimization,
instead of directly optimizing the yield estimation model, we
optimize the UCB acquisition function,

aUCB(x) = ḡ(x)− βυ̂(x), (22)

which automatically balances the tradeoff between exploration
and exploitation for a better design and significantly reduces
the variance of optimization. Note that the second term’s sign
is minus because ḡ(x) is the failure rate (1-yield) and thus the
optimization is a minimization of Eq. (22).

Now the optimization of yield becomes the minimization
of the UCB acquisition function Eq. (22) iteratively until
we find the optimal design x∗. The gradient of the UCB
acquisition function is easily calculated as both ḡ(x) and υ̂(x)
are linear combinations of the qr(vi|x), whose gradient is
given by Eq. (19). The summary of the Bayesian OPT yield

optimization is summarized in Algorithm 2, which is applied
in our experiments.

Algorithm 2 Bayesian OPT Yield Optimization

Require: SPICE-based Indication I(v,x), N , Niter

1: Generate a random design x0 and N random samples vj

2: Pass {vj ,x0}Nj=1 to SPICE-based indication I(vj ,x0) to
get failure samples D = {vj ,x0}N

′

j=1(N
′ ≤ N)

3: Train 5 CNF {qj(v|x)}0j=−4 with dataset D/5
4: for i = 1 to Niter do
5: Update CNF q(v|x) with dataset D
6: Get ḡ(xi−1) and υ(xi−1) from previous five trained

CNF {qj(v|x)}ij=−5 according to Eq. (21) and Eq. (20)
7: Optimize acquisition of Eq. (22) with its gradient to get

next design x∗
i

8: Generate N samples vj from q(v|x∗
i ).

9: Pass vj to the circuit SPICE-based indication I(vj ,x
∗
i )

to get failure samples Di = {vj ,x∗
i }N

′

j=1(N
′ ≤ N)

10: Update dataset D = D ∪Di

11: end for
12: return x∗

i

IV. EXPERIMENTAL RESULTS

We assess the performance of OPT in terms of accuracy
and efficiency on a set of benchmark circuits, including an
operational transconductance amplifier (OTA), a 6T-SRAM,
and an adder circuit. Five SOTA yield optimization methods,
namely, WEIBO [2], MESBO [11], ASAIS [14], KDEBO [13],
and, BYA [9] are implemented for a thorough comparison. To
assess the robustness of each method, we introduce two distinct
circuit specifications, namely higher and lower (referred to as
Case 1 and Case 2), for each circuit in our yield optimization
experiments. The optimal design is validated using MC with
4e7 and 1e6 simulations in Case 1 and Case 2, respectively.
In Case 1, if only one failure event is detected among the
4e7 simulations, its failure rate will be 2.5e-8. To ensure a fair
and meaningful comparison, each algorithm runs 10 times with
different seeds to reduce random fluctuations.

For all experiments, the CNF uses 8 functional transforma-
tions composited by the same 2-layer multi-layer perceptron
(MLP). In each MLP, the number of hidden units is 10 times
the number of the process variation parameters for any yield
problems. ReLU activation function [18] is adopted. The Adam
optimizer [19] is employed for all optimization processes. The
update of the CNF uses 500 iterations whereas the optimization
of the acquisition is 200 iterations. For yield optimization,
we use 10 iterations, each of which proposes 30 samples.
The initialization depends on the variational dimension of
the problem. The baseline methods are implemented using
their (default) settings as suggested in their respective papers.
Because some methods do not generalize well, we also fine-
tune some hyperparameters for them for different circuits to
achieve better performance. In contrast, OPT does not require
any hyperparameters tuning for any of our experiments. All
experiments are conducted on a workstation equipped with
AMD 7950x CPU and 32GB RAM.
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Fig. 3: Validation of knowledge transfer via joint yield estimation for four designs at corners

A. Validation of OPT Thought Joint Yield Estimation
Before we move to yield optimization, we first validate

the capacity of knowledge transfer between different designs
in an adder circuit (details described later) using OPT. The
success of this experiment will reveal OPT’s foundation for its
superior performance in yield optimization. In this experiment,
we conduct yield estimation for the four designs at the corners
of the design parameters space at the same time. We call
this joint yield estimation. For implementation, we update
each model based on the different designs alternatively, each
time with a small number of simulations. We use normal
NF, which can be only used individually for each design,
as a reference without knowledge transfer, and All-Sensitivity
Importance Sampling (ASIS) [14], which has the capacity to
share knowledge between different designs but is based on the
OMSV, as a comparison.

The ground-truth log failure rate, yield estimation, and FOM
as more simulations are conducted are shown in Fig. 3. The
FOM ρ = std(Pf )/Pf (where std(Pf ) is the standard devia-
tion of estimated failure rate) is used as the stopping criterion
for all methods with ρ = 0.1 (indicating at least 90% accurate
with 90% confidence interval) as in many previous works, e.g.,
[3], [20], [21]. We can learn that knowledge transfer enables
both ASIS and OPT to conduct joint yield estimation simulta-
neously for all four distinct designs, resulting in a significant
reduction in simulation costs compared to NF. Because OPT is
based on the truth optimal proposal distribution, it converges
to the true value quickly and accurately. In contrast, based on
OMSV, ASIS shows a slow convergence rate and sometimes
cannot converge to the true value for designs with a high failure
rate, as shown in Fig. 3c. In these four different designs, OPT
achieves an average speedup of 13.69x and 4.29x compared to
NF and ASIS, respectively.
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Fig. 4: Operational Transconductance Amplifier Circuit
TABLE I: Yield optimization report for the OTA circuit

Case Method WEIBO MESBO ASAIS KDEBO BYA Proposed

1

Yield

Best 99.99% 99.99% 99.96% 99.99% 99.99% 99.99%
Worst 99.06% 99.06% 99.84% 99.71% 99.60% 99.93%
Mean 99.68% 99.66% 99.90% 99.96% 99.94% 99.97%
Std 0.35% 0.42% 0.04% 0.09% 0.12% 0.02%

#Sim
Best 3352 1500 2169 8000 6600 890
Worst 9684 5900 5302 8000 6600 890
Mean 5055 4380 3192 8000 6600 890

2

Yield

Best 99.84% 99.85% 99.87% 99.85% 99.84% 99.90%
Worst 99.52% 99.83% 99.27% 99.48% 99.82% 99.79%

Mean 99.73% 99.84% 99.45% 99.69% 99.83% 99.87%
Std 0.15% 3.91e-3% 0.24% 0.10% 7.07e-3% 0.04%

#Sim
Best 2942 3570 3515 8000 6600 670
Worst 7465 5900 3550 8000 6600 670
Mean 4294 5111 3546 8000 6600 670

B. Operational Transconductance Amplifier Circuit

The OTA circuit (shown in Fig. 4) is implemented in a
180 nm CMOS process which consists of 14 transistors. The
circuit contains three design variables: the transistor widths
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TABLE II: Yield optimization report for the SRAM circuit

Case Method WEIBO MESBO ASAIS KDEBO BYA Proposed

1

Fail

Rate

Best 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8
Worst 3.86e-4 2.70e-6 2.50e-7 5.19e-4 1.50e-7 5.00e-8
Mean 3.96e-5 4.23e-5 6.50e-8 1.91e-4 5.00e-8 3.00e-8
Std 1.15e-4 8.10e-7 6.82e-8 2.32e-4 3.54e-8 1.00e-8

#Sim
Best 1161 2880 1186 7000 11000 1020
Worst 2951 6180 1200 7000 11000 1020
Mean 3614 4064 1192 7000 11000 1020

2

Fail

Rate

Best 2.00e-6 2.00e-6 1.00e-6 1.24e-3 5.00e-6 2.00e-6

Worst 5.20e-4 1.21e-4 4.50e-5 1.72e-2 1.16e-4 6.00e-6
Mean 1.60e-4 3.22e-5 1.75e-5 1.02e-2 2.17e-5 4.00e-6
Std 1.56e-4 4.16e-5 1.55e-5 4.19e-3 3.16e-5 1.20e-6

#Sim
Best 901 1580 803 2600 8000 800
Worst 3151 3440 807 6500 8000 800
Mean 1815 2395 804 6110 8000 800

of M5, M7, and M13. Additionally, each transistor has four
process variation parameters, namely oxide thickness, threshold
voltage, and variations in transistor length and width due to
process deviation. In our experiments, the performance of
interest is the quiescent current IQ at 27◦C.

The yield optimization experimental results in Case 1 and
Case 2 are provided in Table I. Most methods achieve high-
yield results for their best performance in Case 1, indicating
their capacity with proper settings. Nonetheless, the mean
performance shows their lack of stability and robustness. OPT
achieves a performance improvement of 0.01% − 0.31% with
a speedup of 5.96x-10.88x over the baseline methods. In
the more challenging Case 2, the best performance of the
competitors is inferior to OPT by a significant margin. MESBO
outperforms OPT slightly in Case 2 for the worst case but with
about 8x more simulations. In contrast, OPT outperforms all
baseline methods with a significant margin in almost all cases.
Based on the mean performance in Case 1 and Case 2, OPT
achieves an average speedup of 5.29x-11.94x over the baseline
methods for a performance improvement of 0.03%− 0.42%.

C. 6T-SRAM Circuit

The SRAM bit-cell (with a simplified schematic of an
SRAM column presented in Fig. 5) is implemented in a 45nm
CMOS process. It consists of six transistors, each of which has
three independent random variables, namely, threshold voltage,
mobility, and gate oxide width. This creates 18 independent
variational parameters for each SRAM cell. The width and
length of a single transistor are specified as the design variables
to be optimized. In our experiments, we focus on optimizing

Fig. 6: The structure of Adder circuit

TABLE III: Yield optimization report for the adder circuit

Case Method WEIBO MESBO ASAIS KDEBO BYA Proposed

1

Fail

Rate

Best 7.50e-7 5.00e-8 2.50e-8 5.00e-8 4.00e-8 2.50e-8
Worst 2.08e-5 1.50e-7 7.50e-8 1.30e-6 5.00e-8 5.00e-8
Mean 6.80e-6 6.00e-8 4.75e-8 3.45e-7 5.50e-8 4.05e-8
Std 8.61e-6 3.00e-8 2.08e-8 4.54e-7 5.00e-9 9.78e-9

#Sim
Best 2121 4070 2417 10000 11000 1475
Worst 4861 11200 2427 10000 11000 1475
Mean 3626 8460 2422 10000 11000 1475

2

Fail

Rate

Best 1.50e-5 1.03e-5 9.00e-6 1.10e-5 1.70e-5 9.00e-6
Worst 1.90e-5 2.00e-5 2.60e-5 1.46e-4 1.75e-5 1.80e-5

Mean 1.74e-5 1.70e-5 1.83e-5 5.24e-5 1.72e-5 1.33e-5
Std 1.36e-6 2.83e-6 5.88e-6 5.40e-5 2.29e-7 2.90e-6

#Sim
Best 2681 4220 2412 8000 8000 1310
Worst 4391 7870 2420 8000 8000 1310
Mean 3536 5687 2415 8000 8000 1310

the write delay as the performance metric of interest. The yield
optimization experimental results are shown in the Table II.

In the easier Case 1, all methods manage to produce the same
best results. However, if we look at the mean performance over
10 experiments, OPT demonstrates remarkable improvement
over the baseline methods with a performance improvement
of 1.66x-6,367x and a speedup of 1.17x-10.78x. In the more
challenging Case 2, ASAIS does outperform OPT with its best
performance. Nonetheless, looking at the mean performance of
yield optimization, OPT achieves a performance improvement
of 4.38x-2,550x with a speedup of 1.01x-10x over the baseline
methods. AIAIS is the second best method with a very close
number of total simulations to OPT. Due to the reliance
on a single OMSV, it fails to consistently achieve the best
performance.
D. Adder Circuit

The adder circuit (Fig. 6) uses a total of 28 MOS transis-
tors, each of which is subject to the same three variational
parameters, introducing a total of 84 variational parameters.
In terms of circuit design, we concentrate on two particu-
lar design variables: the width and length of an individual
transistor. We evaluate the time-to-threshold (TT) performance
within a specified range of 27◦C and determine the yield by
simulating the transient response until the sum output reaches a
predefined threshold voltage. The experimental results for yield
optimization are presented in Table III.

In this tough assessment, only ASAIS and OPT manage to
achieve the best potential design. BYA also shows a good
performance in terms of worst performance and standard
deviation. We believe that, based on practical projects, the



TABLE IV: Yield optimization for the three circuits with different numbers of total simulations

#Simulation=5000 #Simulation=10000

Circuit Metric WEIBO MESBO ASAIS KDEBO BYA Proposed WEIBO MESBO ASAIS KDEBO BYA Proposed

OTA

(Yield)

Best 99.94% 99.99% 99.96% 99.99% 99.98% 99.99% 99.99% 99.99% 99.98% 99.99% 99.99% 99.99%

Worst 99.08% 99.07% 99.84% 90.94% 99.60% 99.93% 99.05% 99.93% 99.86% 99.91% 99.60% 99.95%

Mean 99.52% 99.82% 99.90% 98.96% 99.93% 99.97% 99.53% 99.97% 99.93% 99.96% 99.94% 99.97%

Std 0.33% 0.37% 0.04% 2.68% 0.12% 0.02% 0.39% 0.02% 0.05% 0.09% 0.12% 0.01%

6T-SRAM

(Fail Rate)

Best 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8 2.50e-8

Worst 3.86e-4 2.70e-6 5.00e-8 9.24e-2 4.82e-1 5.00e-8 5.75e-6 5.00e-8 5.00e-8 5.19e-4 1.50e-7 5.00e-8

Mean 3.96e-5 4.23e-5 3.75e-8 9.53e-3 1.54e-1 3.00e-8 1.24e-6 3.06e-8 3.33e-8 1.91e-4 5.00e-8 2.75e-8

Std 1.15e-4 8.10e-7 1.25e-8 2.76e-2 1.98e-1 1.00e-8 1.73e-6 1.04e-8 1.18e-8 2.32e-4 3.54e-8 7.50e-9

Adder

(Fail Rate)

Best 7.50e-7 5.00e-8 2.50e-8 5.00e-8 4.00e-8 2.50e-8 3.33e-8 5.00e-8 2.50e-8 5.00e-8 4.00e-8 2.50e-8

Worst 2.08e-5 1.24e-3 6.67e-8 2.03e-2 5.00e-8 5.00e-8 2.00e-6 1.50e-7 5.00e-8 1.30e-6 5.00e-8 5.00e-8

Mean 6.80e-6 2.50e-4 4.35e-8 2.84e-3 4.50e-8 3.88e-8 1.55e-6 6.00e-8 4.44e-8 3.45e-7 4.50e-8 3.55e-8

Std 8.61e-6 4.91e-4 1.67e-8 6.04e-3 5.00e-9 9.43e-9 7.58e-7 3.00e-8 1.04e-8 4.54e-7 5.00e-9 7.68e-9

mean performance is more of a concern. In that sense, OPT
is the best among all methods in delivering the best yield
design with 10 runs. More surprisingly, OPT manages to do
this with always the minimum number of simulations. In Case
1, OPT achieves a performance improvement of 1.17x-168x
with a speedup of 1.64x-7.46x; In Case 2, OPT achieves a
performance improvement of 1.28x-3.94x with a speedup of
1.84x-6.11x.

E. Resource-based Comparison

Averaging the results over all three experiments, OPT
achieves an average speedup of 5.0x-8.7x with higher yield
designs compared to other baselines. However, this conclusion
might not be convincing enough because each model has its
own stopping criteria, and the reported results can be biased
as some methods might perform very well at some stages. We
follow the classic way to compare optimization methods based
on the same given resources. All methods are altered to remove
their stopping criteria and kept running while we compare the
optimized yield against the time/computational resources. We
conduct the Case 1 experiment for all the previous circuits.
Results at total simulations of 5,000 and 10,000 are recorded.
The statistical results over 10 random runs are shown in
Table IV.

For the OTA circuit, OPT is always better in all cases. With
only 5,000 simulations, OPT can achieve an average yield of
99.97%, which outperforms all other methods even with 10,000
simulations. In contrast, only MESBO can achieve similar
performance to OPT with 10,000 simulations. Compared to all
baselines, OPT achieves a performance improvement of 0.06%-
0.45% with 5,000 simulations and 0.00%-0.44% with 10,000
simulations. For the classic 6T-SRAM circuit, all methods
manage to achieve the best performance, which is consistent
with the literature. Nonetheless, most of them need 10,000
simulations to achieve close results to OPT with 5,000 simula-
tions. Compared to all baselines, OPT achieves a performance
improvement of 1.25x-5,133,333x with 5,000 simulations and
1.11x-6,945x with 10,000 simulations, highlighting the ef-

ficiency of OPT in optimization with a limited number of
simulations. For the adder circuit, most methods can achieve
reasonably good results with 5,000 simulations except for
MESBO. OPT shows clear stability and the best performance
for almost all cases except for the standard deviation of BYA.
Compared to all baselines, OPT achieves a performance im-
provement of 1.12x-73,000x with 5,000 simulations and 1.25x-
44x with 10,000 simulations, again highlighting the efficiency
of OPT in optimization.

TABLE V: Sequential Ensemle vs. Deep Ensemble

OTA

(Yield)

6T-SRAM

(Fail Rate)

Adder

(Fail Rate)

Deep Ens. Seq.Ens. Deep Ens. Seq.Ens. Deep Ens. Seq.Ens.

Best 99.87% 99.99% 5.00e-8 2.50e-8 5.00e-8 2.50e-8
Worst 99.77% 99.93% 5.05e-4 5.00e-8 1.50e-7 5.00e-8
Mean 99.82% 99.97% 1.01e-4 3.00e-8 6.43e-8 4.05e-8
Std 0.03% 0.02% 2.00e-4 1.00e-8 3.50e-8 9.78e-9

F. Ablation Study for Sequential Ensemble

Finally, we assess the effectiveness of the proposed sequen-
tial ensemble method by replacing it with the classic deep
ensemble method and conducting yield optimization in Case
1 experiments of the three circuits. The results are presented
in Table V, where the sequential ensemble shows a clear
improvement over the deep ensemble with an improvement of
1.59x-30,000x.

V. CONCLUSION

We propose OPT, a novel yield optimization framework
equipped with CNF and BO without the need for a surrogate
for the first time. The superiority is supported by extensive
experiments on real-world circuit benchmarks, ablation studies,
and special designed joint yield estimation validation. The
performance of OPT can be further improved by using other
advanced sampling methods, e.g., generative diffusion model.
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