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Abstract—Design flow parameters are of utmost importance
to chip design quality and require a painfully long time to
evaluate their effects. In reality, flow parameter tuning is usually
performed manually based on designers’ experience in an ad
hoc manner. In this work, we introduce a machine learning-
based automatic parameter tuning methodology that aims to find
the best design quality with a limited number of trials. Instead
of merely plugging in machine learning engines, we develop
clustering and approximate sampling techniques for improving
tuning efficiency. The feature extraction in this method can
reuse knowledge from prior designs. Furthermore, we leverage
a state-of-the-art XGBoost model and propose a novel dynamic
tree technique to overcome overfitting. Experimental results
on benchmark circuits show that our approach achieves 25%
improvement in design quality or 37% reduction in sampling
cost compared to random forest method, which is the kernel of
a highly cited previous work. Our approach is further validated
on two industrial designs. By sampling less than 0.02% of possible
parameter sets, it reduces area by 1.83% and 1.43% compared
to the best solutions hand-tuned by experienced designers.

I. INTRODUCTION

Modern industrial chip design flows are immensely com-
plex. A design flow might have multiple steps, each step might
have multiple functions and each function can be configured
with many parameters. Consequently, industrial flows may
have hundred-thousand lines of scripts and are configured with
thousands of parameters.

The impact of parameter settings on overall design quality is
phenomenal. Figure 1 plots the power and the worst negative
setup time slack of design B22 from ITC99, when it is syn-
thesized with different logic synthesis parameters. Changing
logic synthesis parameters can result in 3X difference in
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Fig. 1: Solution quality variance in parameter space.

power and more than one clock cycle difference in slack.
Industrial design teams will tune flow parameters as best as
they can. Flow parameters are usually tuned manually based
on designers’ experiences. Because industrial design flows
would take several hours or days to run on large designs, the
manual parameter tuning process can be very time-consuming,
especially for novice designers. Consequently, design turn-
around time is stretched long or design quality is compromised
with an inadequate exploration of parameters.

Therefore, automatic design flow parameter tuning is highly
desirable. However, due to the difficulty of collecting vast
amounts of design flow data for implementing synthesis and
physical design flows, there are few published works in this
area. Genetic algorithm [1] based automatic flow parameter
tuning is proposed in [2]. In this work, genetic algorithm
explores different parameter settings to find the optimal one
without learning an internal model for predicting the effect of
different parameter settings. This would suffer from the need
to run more samples to find a good solution. The work of
[3] then introduces a customized learning approach to predict
possible parameter settings for the next sampling iteration.
Both works are highly customized to a company’s in-house
flow without many details disclosed and thus difficult to
generalize. A recent work proposed to use a recommender
system to tune parameters for macros [4].

Design space exploration (DSE), a problem similar to
design flow parameter tuning, has been studied across various
levels of abstractions [5] [6] [7] [8] [9] [10]. Active learning-
based method is widely successful in DSE. This method builds
an internal machine learning model to predict the design
quality from design parameter space, and selects the next
sampling point based on Gaussian Process [11] [12] or random
forest model [13] [10]. Then, the flow result of the newly
sampled parameter set is added into the dataset to re-train the
machine learning model for the next sampling step.

Despite their similarities, design flow parameter tuning is
different from design space exploration. First, design flow pa-
rameter tuning often has a larger amount of prior data to learn
from because similar parameters have been applied to previous
designs multiple times already. Design space exploration, on
the contrary, often has fewer prior data to learn from. This is
because each design is different, and the impact of architecture
decisions such as loop unrolling and pipelining can change
significantly across different designs. Second, design flows
such as synthesis and physical design flows often have an
order of magnitude longer runtime and more parameters than
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一、问题
flow parameter tuning，优化问题。和平常的design space exploration的不同：
① 有很多prior data可供学习。
② 参数很多，仿真时间巨久。

二、特征重要性构建方法
得到特征重要性方法
输入：先前的数据集，S'和L（X和Y）
输出：标志每个特征重要性的向量I
① 把数据集S移除掉第q个特征，得到剩下的数据集Sq
② 把Sq分为n组，即n个Sk，每个Sk内的所有sk特征是一模一样的
③ 计算每个Sk对应标签Lk的variation，把n个variation加起来，得到第q个特征的重要性。 

三、FIST方法
1、 cluster
用I屏蔽掉S里不重要的特征，剩余相同的特征相同的S，被分为m个cluster，每个cluster为Si

2、model-less sample
①从p个cluster里各采样一个s，然后用这p个s的标签y，来各自表示这p个cluster里所有的样本。这些所有的样本和标签构成Sapprox

3、model-guided sample
（1）探索阶段
① 用Sapprox训练一个xgb，然后用xgb预测Sapprox的最大(小)值，其所对应的sa便是所要采样的sa。
② 注意：sa属于Sapprox未包含的cluster，所以让sa的标签代表该cluster内的所有样本，加入到训练集Saprrox中。
③ 回到①，直到进入利用阶段

（2）利用阶段
① 只使用真实的样本和标签值，来训练xgb
② 用xgb预测最大(小)值，将其对应的表亲啊加入训练集
③ 回到①，直到达到成本限制。

（3）注意，xgb的树深度随着真实样本训练集数量的增加而增大

四、作用
design flow param仿真一次很久，一般由工程师手动调参。如果全自动优化，则可以大大节省时间。
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those of design space exploration, including high-level syn-
thesis design space exploration. This significantly reduces the
number of sampling iterations and results in a smaller dataset
for learning. Therefore, despite the similarity, automatic flow
parameter tuning is more challenging from a time budget
perspective. To apply the machine learning approach, we need
to improve the efficiency of automatic flow parameter tuning
with more advanced and customized learning techniques.

We work on the design flow parameter tuning problem,
also named parameter space exploration to indicate both
the similarity with and difference from conventional design
space exploration. Synthesis or physical design parameters are
tuned to optimize design quality after the complete synthesis
and physical design flow. To collect data for experiments,
we performed extensive synthesis and physical design runs
with different synthesis parameters on many designs to build
a dataset, where we notice the impact of parameters can
be consistent for different designs. This allows transferring
knowledge from known prior data.

We propose a Feature-Importance Sampling and Tree-Based
(FIST) method to conduct design flow parameter tuning.
FIST learns the impact of parameters from previously well-
explored designs and fully utilizes such information in its
sampling process. Some recent works in DSE also introduced
prior knowledge transfer. For example, [14] improves genetic
algorithm by guiding DSE with expertise from IP authors.
This technique requires human knowledge, while FIST learns
the prior knowledge automatically and transfers the learning
to new designs. Furthermore, FIST leverages a state-of-the-
art machine learning model XGBoost [15] and proposes a
dynamic model adjustment method to overcome the overfitting
problem in the early stages of parameter tuning.

Our contributions include:
• A clustering based sampling strategy which learns and

utilizes knowledge from other already explored designs.
To the best of our knowledge, very limited studies
have been done on leveraging prior data in design flow
parameter tuning before our work.

• We introduce an approximate sampling strategy which
leverages the idea of semi-supervised learning to over-
come the challenge of limited training labels. We also
balance the exploration and exploitation in our model-
guided refinement sampling process.

• A customized XGBoost learning model whose depth
grows dynamically during the refinement process. We are
the first to leverage XGBoost model in this area.

• We build a large dataset to evaluate our method. Our
dataset includes 9 designs with 1728 parameter samples
each. We use non-proprietary commercial synthesis and
physical design tools so our data is applicable to broad
scenarios. Compared with the highly cited random forest-
based approach [13], we achieve 53% improvement in
quality ranking or 35% reduction in sampling cost when
evaluated with single objectives; 25% better in quality or
37% reduction in sampling cost for multiple objectives.

• We incorporate FIST into the automatic physical design
parameter tuning process on two industrial designs, each
with a parameter space containing more than one million
parameter samples. FIST improves the area by 1.83% and
1.43% compared with the best solutions hand-tuned by
experienced designers.

II. PROBLEM FORMULATION

We refer to the parameters in logic synthesis or physical
design scripts as parameters or features. Each parameter
combination is also referred to as a sample or a parameter
vector. A parameter combination d consists of c features and
each feature has ni options, where i ∈ [1, c]. Continuous
features can be discretized into categorical data. We use S
to denote the whole parameter space and |S| =

∏c
i=1 ni. The

parameter space grows exponentially when c increases. We
evaluate the design objectives after we complete the whole
synthesis and physical design flow. Due to the large parameter
space, the limited computation resources and the allowed
execution time, only a small subset S̃ of samples can complete
design flow and be evaluated. The process of selecting samples
to form S̃ is referred to as sampling. The number of trials
allowed is denoted as budget b, |S̃| <= b.

For each single design objective such as power P , the goal
of design flow parameter tuning framework F is to find the
sample with lowest P with no more than b samples. Assume
learning model f is used during exploration,

S̃ = F (S, b, f),

F ∗ = arg min
F

(minP [S̃]−minP [S]).

An alternative formulation is to minimize the number of
samples b while achieving power no higher than P .

For multiple design objectives, the goal of F is to derive
an approximated parameter set for Pareto-optimal samples,
namely, Pareto frontier. The quality of Pareto frontier is
measured by Average Distance from Reference Set (ADRS).
A lower ADRS means the parameter set is closer to the actual
Pareto set.

Assume two of the objectives are power P and delay
D. Given actual ground-truth Pareto frontier T ⊂ S and
approximate frontier Λ ⊂ S̃, we have:

ADRS(T,Λ) =
1

|T |
∑
τ∈T

min
λ∈Λ

δ(τ, λ),

δ(τ = (Pτ , Dτ ), λ = (Pλ, Dλ)) = max (0,
Pλ − Pτ
Pτ

,
Dλ −Dτ

Dτ
).

III. PRELIMINARY

A. Iterative Refinement Algorithm

The effectiveness of iterative refinement framework has
been proved in many previous DSE works [11] [12] [7]. It
is illustrated in Figure 2 and Algorithm 1. It divides the space
exploration process into two phases: model construction and
model refinement. At model construction phase, p samples
are selected and designers run design flow to build initial
model f . Such a sampling process is referred to as model-
less sampling. During model refinement phase, according to

Model-less	Sampling	+𝒑

Model-guided	Sampling	+𝟏

TrainPredict

Training
samples	𝑺$

Learning
model	𝒇

Remaining
samples	
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Once

Iteration

Fig. 2: Iterative refinement framework.
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Algorithm 1 Iterative Refinement Framework

Input: Parameter space S, budget b, completed samples S̃ = ∅
Output: Completed samples S̃

1: //**Model-less Sampling**/
2: Select p initial samples from S to run and add to S̃
3: //**Model-guided Sampling (Refinement)**/
4: for each int i ∈ [1, b− p] do
5: Train model f with S̃
6: Pick s from S − S̃ based on f , run s, add to S̃

f ’s prediction, it iteratively selects the most promising sample
s to run through design flow. Then f is refined by the new
completed set S̃, which is augmented by s at each iteration.
We name the model-based sample selection method at this
phase as model-guided sampling.

B. Tree-based Algorithm
The work of [13] proves that tree-based algorithms are

effective learning models in the refinement framework and
proposes to use random forest [16].

Decision tree is the simplest and most fundamental tree-
based algorithm. It divides the dataset into smaller sets and
tries to make samples in the same set fall under the same label.
Usually, the maximum depth of trees needs to be limited to
reduce overfitting. When the maximum depth is too large, less
restriction is given and the flexible decision tree will fit the
training data too closely.

Many ensemble methods use a combination of multiple
decision trees, such as random forest and Gradient Boosted
Regression Trees (GBRT) [17]. The former mainly reduces
variance while the latter reduces bias. Random forest is a
combination of tree predictors such that each tree fits on sub-
samples of the dataset. GBRT builds trees sequentially, each
building on the errors of the previous one. XGBoost is a very
efficient and popular implementation of GBRT.

IV. THE ALGORITHM

Figure 3, 4 and Algorithm 2 illustrate our algorithm FIST.
The major innovative strategies include: 1. sampling by
clustering; 2. approximate samples; 3. dynamic model. The
“approximate samples” strategy is actually incorporated in
“sampling by clustering”.

A. Clustering by Similarity in Important Features
For a specific design, samples with the same values on some

features will result in similar solution qualities, especially for
the “important” features. The “importance” here means the
extent to which each feature can influence the final solution
quality. When evaluating the influence of each feature, the
values of all other features are controlled to be the same. In
Algorithm 3, samples with the same value for all other features
except the evaluated one form measurement subgroups Sk. In
this way, the summation of the solution quality variation σ2

k

within each measurement subgroup reflects the importance of
this evaluated parameter. A feature importance vector I ∈ Rc
is generated.

For example, a parameter space S′ consists of two
features, each with two options {0, 1}, then S′ =
{[0, 0], [0, 1], [1, 0], [1, 1]}. Assume the corresponding labels
on solution quality L = {1, 2, 3, 4}. When measuring the first
feature, Sq is constructed by removing the first feature from

Algorithm 2 FIST Framework

Input: Parameter space S, budget b, completed samples S̃ = ∅
feature importance I ∈ Rc, clustering refinement threshold θ
Output: Completed samples S̃

1: //**Clustering**/
2: Identify more important features ι = I > median(I),

where ι ∈ {0, 1}c
3: Build m clusters Si (i ∈ [1,m]) as a partition of S, s.t. ∀si ∈ Si,
si[ι] are the same

4: //**Model-less Sampling**/
5: Randomly select p clusters Sj (j ∈ [1, p]) from m Si (i ∈ [1,m])
6: Randomly select one sj from each Sj

7: Run and add sj (j ∈ [1, k]) to S̃
8: ∀s ∈ Sj , label s with sj and add s to S̃approx

9: //**Model-guided Sampling (Refinement)**/
10: for each int i ∈ [1, b− p] do
11: Initialize fi, its depth depends on i
12: if i <= θ then // Exploration and approximation
13: Train fi with S̃approx

14: Pick sa in S − S̃approx based on fi, run sa, add to S̃
15: Identify Sa s.t. sa ∈ Sa

16: ∀s ∈ Sa, label s with sa and add s to S̃approx

17: else // Exploitation
18: Train fi with S̃
19: Pick s in S − S̃ based on fi, run s, add to S̃

Algorithm 3 Feature Importance Evaluation

Input: Parameter space S′ with labels L from prior designs
Output: Feature importance I ∈ Rc

1: for each int q ∈ [1, c] do
2: Sq = (S′ with the qth feature removed from all s′ ∈ S′)
3: Build n measurement subgroups Sk (k ∈ [1, n]) as a partition

of Sq , s.t. ∀sk ∈ Sk, sk are the same
4: I[q] ∝

∑n
k=1 σ

2
k, σ2

k is variance of L in Sk

S′, Sq = {[0], [1], [0], [1]}. Then L for these two subgroups are
{1, 3} and {2, 4}. I[1] = σ2(1, 3) + σ2(2, 4) = 2. Similarly,
for the second feature, I[2] = σ2(1, 2)+σ2(3, 4) = 0.5. Thus,
the feature importance vector I = [2, 0.5] and the binary
vector indicating if each feature is important is ι = I >
median(I) = [1, 0]. In this case, the first feature is important,
which means it has a stronger impact on solution quality L.
FIST learns and transfers feature importance from prior data
because such important parameters can be quite consistent
among different designs, but notice that it is completely
different from assuming certain universally good parameter
settings across different designs ever exist.

Clustering is then performed with such prior knowledge on
feature importance (Line 1-3 in Algorithm 2). More important
features ι ∈ {0, 1}c are first identified, then samples with the
exact same values for ι are grouped into the same cluster
Si. In this way, the final solution qualities for the samples in
the same cluster are closer. The sampling strategies in FIST
use one sample to partially represent samples from the whole
cluster, which makes sampling much more efficient.

B. Model-less Sampling Based on Clusters

The model-less sampling aims at exploring the whole pa-
rameter space with a limited number of samples p < b. During
feature importance based clustering, the number of clusters m
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Fig. 3: FIST framework.

is set to be greater than p to retain in-cluster similarity. The
value of m can be easily adjusted by modifying the number of
important features ι. Sampling from different clusters avoids
wasting budget on similar samples. As the red samples in
Figure 4 shows, only a subset of clusters are selected and
one sample from each selected cluster is randomly chosen to
represent its cluster. We complete the design flow of selected
samples and put them into S̃, which is the training data for
constructing the machine learning model.

C. Approximate Samples

In order to enhance the machine learning model training
with limited sampling that costs expensive runtime, we in-
crease the sampling dataset in an approximate manner. If a
cluster Sj has only one sample sj ∈ Sj with known label
l(sj), we apply this label to the rest of the samples in Sj as
training data. Although the design flow has not been run for
Sj−{sj}, their actual labels should be similar to l(sj), as they
belong to the same cluster. By using Sj−{sj} as approximate
samples, the entire cluster Sj is included in set S̃approx. This
process is indicated in Figure 3 and step 8 of Algorithm 2.
The usage of S̃approx and approximate samples is shown in
steps 13-16. This is partially inspired by the “pseudo labeling”
[18] commonly used in semi-supervised learning.

D. Model-guided Sampling by Clustering

We strive to balance “exploration” and “exploitation” in the
model-guided sampling process. “Exploration” only acquires
new knowledge from unexplored clusters while “exploitation”
also makes use of promising explored clusters in sampling.
At the beginning of model refinement phase, exploration is
emphasized, because the number of completed samples |S̃| is
relatively small and many clusters have not been explored.
Thus, FIST identifies a new sample sa from unexplored
clusters S − S̃approx in step 14 of Algorithm 2. Also, it adds
whole cluster Sa to approximate samples set S̃approx.

After θ iterations, the emphasis is shifted to exploit explored
clusters. Now neither cluster information nor approximate
samples are considered anymore. The model is simply trained
with completed samples S̃ and the new selected sample in
S−S̃ is often from previously explored clusters. This is shown
in step 19 of Algorithm 2 and yellow samples in Figure 4.

E. Dynamic Tree Depth

The bias-variance trade-off in machine learning indicates
that an appropriate model complexity depends on training data
size. The model refinement stage starts with p samples and

1. Model-less	Sampling 2. Model-guided
Sampling

(Exploration): 0 0			1					1			 1				0	

More	Important
Features

Other
Features

001***

000***

010***

011***

100***

101***

111***

3. Model-guided
Sampling

(Exploitation)
Samples	in	one	cluster

Unselected samples

Selected samples	(max	1	sample	each	cluster)

𝜾	 : 1	1 1	0 0 0	
𝑰	 :		9	7	5	3	2	1	

Selected samples	(no longer limited to cluster)

Fig. 4: An example of sampling by clustering.

ends with b completed samples. Assuming b > 2 ∗ p, the
number of training data at least doubles during model-guided
sampling. Thus, it is rational to vary the model complexity
accordingly. We choose to change the maximum tree depth
through the model refinement process, as shown in Line 11 in
Algorithm 2. Initially, we use relatively shallow trees, which
result in a less complex model, then increase the maximum
tree depth to the optimal depth.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Nine different designs from ITC99 are synthesized with a
commercial synthesis tool in 45nm NanGate Library and then
placed and routed by Cadence Encounter v14.28. Their post-
synthesis gate number ranges from 167 to 76842. Both slack
and power are measured by Encounter. When each design
is tested, all other designs are utilized as “known” designs
to evaluate feature importance. The design objectives are
“Power”, “Setup Time WNS” and “Hold Time WNS”, where
WNS means the worst negative slack. For each design, we
choose nine synthesis parameters for tuning, and exhaustively
collect all 1728 samples in the parameter space. Synthesis
parameters include: set max fanout, set max transition, set
max capacitance, high fanout net threshold, set max area,
insert clock gating, leakage power optimization, dynamic
power optimization and compile type. Any non-numeric pa-
rameters are represented by multiple artificial features with
one-hot encoding.

We compare our method to prior arts in two ways. First, we
evaluate the quality of samples with a fixed sampling budget
b. In this case, p = b−10

2 samples are selected for model-
less sampling. Second, we evaluate the number of iterations
performed to reach a required design flow quality. In this case,
we set p = 40 for model-less sampling. We set the maximum
tree depths of our dynamic models to be 3 and 10 for initial
and final stages, respectively. The cluster refinement threshold
θ is set to 10 iterations. To reduce randomness, all single-

TABLE I: Methods denotation.
Denotation Methods
baseline RF random sampling & Random Forest model
baseline random sampling & XGBoost (same below)
dyn dynamic-depth tree model
mless model-less sampling by clustering
ref model-guided sampling in refinement by clustering
rand feature importance assigned randomly
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Fig. 5: Best solution rank with the same sample cost.

Fig. 6: Sample cost to reach the same solution rank.

objective and multi-objective results are obtained by taking
an average of 500 and 1000 trials, respectively.

B. Single Objective Results
We first evaluate different methods by targeting three

single objectives separately. Compared with exploring the
Pareto frontier, such a simpler task is a more straightforward
evaluation of space exploration algorithms. Denotations for
different strategies are defined in Table I. FIST method can
also be denoted as ‘mless ref dyn’, which adopts all strategies
including XGBoost, dynamic model and cluster sampling in
both model-less sampling and refinement.

The quality of selections is measured by their rank in
the whole parameter space. Figure 5 shows the best rank
of explored results for three objectives given a fixed budget.
For example, “Power 60” means the algorithm attempts to
minimize power with 60 samples for refinement. On aver-
age, FIST achieves 53% reduction in ranking compared with
the original framework baseline RF. XGBoost outperforms
Random Forest as the learning model and all other strategies
contribute to a better ranking. Among these strategies, the
contribution of cluster sampling is higher than the dynamic
model.

Another method of note is “rand mless ref dyn”, where
feature importance is randomly assigned. Though worse than
the FIST method, it still outperforms “baseline”. On one
hand, it indicates clustering sampling method itself benefits
parameter tuning even without feature information; on the
other hand, it proves the effectiveness of using important
features and learning from other designs.

Two other popular methods are also compared with FIST
in Table II for reference. TED sampling is proposed in [13]

Fig. 7: Best ADRS with the same sample cost.

Fig. 8: Sample cost to reach the same ADRS.

to replace random sampling in “baseline RF”, but it fails to
improve performance except on “HoldTime”. We analyzed
such unsupervised TED sampling method with our clustering
strategy. On average the top 30 samples from TED falls into
only 14 clusters, leaving the other 58 clusters empty. That
is, under the view of supervised clustering, such unsuper-
vised method cannot pick the most representative samples
in parameter space. The genetic learning method [3], which
is originally applied to primitives, is also implemented for
comparison. As [6] has concluded, the given budget is too
limited for such genetic algorithms to accumulate a large
enough population.

Besides better sample quality under a fixed budget, we are
also interested in reducing sample cost while reaching the
same quality. The cost here refers to the number of samples
synthesized in model refinement phase. Figure 6 indicates the
cost to reach same solution ranks, where 35% cost reduction is
achieved by adopting all strategies. We can observe a similar
trend for different strategies.

C. Pareto Frontier Result

The performance on Pareto frontier identification is evalu-
ated with ADRS. ADRS can be measured because we know

TABLE II: Rank results with the same sample cost.
Methods Power 40 SetupTime 40 HoldTime 40
baseline RF 8.0 9.8 14
baseline RF TED [13] 13 18 13
Genetic Algo [3] 28 40 26
Methods Power 60 SetupTime 60 HoldTime 60
baseline RF 3.2 4.7 7.7
baseline RF TED [13] 7.9 10 7.2
Genetic Algo [3] 23 15 19



TABLE III: Standard deviation of samples.

Power SetupTime HoldTime
Random sampling 3.35 0.377 0.288
In-cluster sampling (learn) 0.49 0.152 0.175
Cross-cluster sampling (learn) 3.42 0.384 0.282
In-cluster sampling (true) 0.54 0.135 0.146
Cross-cluster sampling (true) 3.39 0.383 0.294

the quality of the whole design space after data collection.
Figures 7 and 8 show the performance in exploring Pareto
frontier. Sample cost is fixed for Figure 7 and ADRS level is
fixed for Figure 8. A range of cost levels and ADRS levels is
covered. The effectiveness of all strategies is consistent on
all cost or ADRS levels we have tested. On average 25%
improvement in ADRS and 37% improvement in cost are
achieved.

D. Effect of Sampling

To further understand the effect of sampling by clustering,
the similarity of samples by different sampling methods is
shown in Table III. It compares random sampling, sampling
within cluster, and sampling from different clusters. The
standard deviations σ of their solution quality are measured.
The “true” and “learn” in parentheses indicate whether feature
importance is ground-truth or learned from other designs.
The in-cluster sampling gives much lower σ, which verifies
that samples from the same cluster have much more similar
quality. This provides the rationale of using S̃approx with
approximate labels. The learned in-cluster σ is only slightly
higher than ground truth for timing, indicating that learned
feature importance is close to the ground truth.

However, σ for cross-cluster sampling is not significantly
higher than that for random sampling. That means simply
sampling from different clusters does not lead to more rep-
resentative samples. That is also why approximate samples
S̃approx are necessary in such clustering strategy.

VI. FIST APPLICATION IN INDUSTRY

A. Experiment Setup on Industrial Designs

We have developed a FIST-based automatic parameter
tuning flow for industrial physical design flows based on
commercial EDA tools. The designs we experimented on are
from a deep learning inference accelerator [19] implemented
in 16nm FinFET technology: a 71K gate Processing Element
(PE) and a 117K gate RISC-V microprocessor (RISC-V).
The design objectives that FIST optimizes are ‘area’ and
‘setup time TNS’. They are optimized under the condition that
‘hold time TNS’ and ‘DRC violations’ are met. The quality
of FIST’s parameter selections is compared with the quality
of a set of parameter selections hand-tuned by experienced
designers on these recently taped-out designs.

Compared with experiments on ITC99, this industrial exper-
iment explores a much larger parameter space. Thirteen phys-
ical design parameters are tuned and each parameter provides
2 to 5 options. Details of the parameters are shown in Table
IV. The whole parameter space consists of 1,382,400 samples.
In this case, it is not possible to collect data exhaustively like
in the ITC99 experiment. We limit the budget b of FIST to
be around 200, which is less than 0.02% of parameter space.
By comparison, the designer would hand-tune 30 parameter

TABLE IV: Physical design parameters for industrial designs.

Physical design parameter Settings
postroute iterations 0, 1, 2, 3, 4
cts.optimize.enable local skew False, True
clock opt.hold.effort low, medium, high
postroute (clock tran fix) disable, enable
postroute (useful skew, timing opt) 0, 1
useful skew (power opt) 0, 1
clock buffer max fanout 22, 36, 48, 96
target skew 0.025, 0.05, 0.1, 0.3
setup uncertainty -0.025, -0.05, -0.1
hvt cell swap enable during leakage optimization 0, 1
extra hold uncertainty for SRAM macro -0.025, -0.05, -0.1, -0.15
max util 0.7, 0.78, 0.85

hold uncertainty -0.002, -0.005, -0.008
-0.01, -0.012

selections before settling on the final parameter selection. We
check whether FIST, the automatic parameter tuning method,
provides better solutions.

Though taking more trials than the hand-tuning process,
parameter tuning with FIST can be fully automatic without
any human knowledge. Hand-tuning parameters 200 times for
multiple designs costs extra engineer time and is not likely
to find a better solution than FIST. We set initial sampling
number p = 100 and cluster refinement threshold θ = 40
based on the budget b = 200. To leverage computer farms
and prove the scalability of FIST, the ML model now selects
around 10 best samples at each iteration instead of just one.
Then the design flows with selected parameters are completed
on multiple machines in parallel.

B. Parameter Tuning Performance

The qualities of parameter space exploration for PE and
RISC-V are shown in Figure 9 and 10, respectively. The x-
axis shows area in µm2 and y-axis shows setup time TNS
in ns. Points on the upper-left boundary of all the already
explored samples are desirable Pareto points. We present six
sequential stages during the tuning process, corresponding to
six sub-graphs in Figure 9 and 10. Subgraph 1 contains p =
100 initial samples and each new subgraph adds around 20
new samples. In each subgraph sgi > 1, black points are 30
parameter selections hand-tuned by the designers, green and
yellow points are the 20 new samples explored at that stage,
blue and red points are the 100+(sgi−1)∗20 samples already
explored in previous stages. Yellow and red points are Pareto
points.

For PE, the best area of hand-tuned parameter selections (in
black) is 56,483, while FIST finds a solution (in yellow) with
the area of 55,453 with acceptable setup time closure. The
improvement in area is 1.82%. Similarly, in RISC-V, FIST
reduced the best area from 113,375 (in black) to 111,751
(in yellow), improving the area by 1.43%. Notice that such
improvement is achieved by exploring less than 0.02% of the
parameter space.

Interestingly, the strategies of FIST can be clearly observed
in different stages of this parameter tuning process. The hand-
tuned solutions tend to aggregate into one cluster, which
means they have similar design qualities. In comparison, the
initial samples in subgraph 1 distribute much more sparsely. It
is contributed by the cluster-based model-less sampling, which
avoids selecting similar samples. After initial sampling, since
cluster refinement threshold θ is set to 40, subgraph 2, 3 per-
form ‘exploration’ and subgraph 4, 5, 6 perform ‘exploitation’.
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Fig. 9: Parameter tuning process in six stages on PE. Area
(µm2) vs. setup TNS (ns). Red and yellow are Pareto points.
Black are baselines from hand-tuned solutions.

The ‘exploration’ and ‘exploitation’ show different effects. In
subgraph 2, 3, new samples (green and yellow) slowly move
towards the upper left direction, but still distribute sparsely,
especially for PE. But in subgraph 4, 5, 6, when model
exclusively performs ‘exploitation’, new samples, which now
concentrate around new Pareto points, generally have better
quality. Notice that all 60 points at this stage outperform the
hand-tuned solutions in ‘area’. By subgraph 6, new samples
gradually converge at Pareto point, which means the best point
that FIST can find is approximately reached.

VII. CONCLUSION

Design flow parameter tuning is a daunting task and an
efficient automatic approach is highly desirable. In this paper,
we present an efficient machine learning approach for auto-
matic parameter tuning. We build a large dataset, from which
we developed a clustering-based method to leverage prior
data to improve sampling efficiency during exploration. We
also introduce approximate sampling and dynamic modeling
based on semi-supervised learning and bias-variance trade-
off principles. Our approach either improves design quality
significantly or requires much less sampling cost to achieve
a given design performance compared with prior exploration
methods. Finally, we validate our method on two more com-
plicated industrial designs with a much larger parameter space.
It improves the best hand-tuned solutions by experienced
designers with reasonable budgets.
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Fig. 10: Parameter tuning process in six stages on RISC-V.
Area (µm2) vs. setup TNS (ns). Red and yellow are Pareto
points. Black are baselines from hand-tuned solutions.
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for multi-objective optimization,” in ICML, 2013.

[13] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in DAC, 2013.

[14] M. K. Papamichael, P. Milder, and J. C. Hoe, “Nautilus: Fast automated
ip design space search using guided genetic algorithms,” in DAC, 2015.

[15] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in KDD, 2016.

[16] L. Breiman, “Random forests,” Machine Learning, 2001.
[17] J. H. Friedman, “Greedy function approximation: a gradient boosting

machine,” Annals of Statistics, 2001.
[18] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised

learning method for deep neural networks,” in ICML Workshop, 2015.
[19] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang,

B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al., “A 0.11 pj/op,
0.32-128 tops, scalable multi-chip-module-based deep neural network
accelerator with ground-reference signaling in 16nm,” in VLSI, 2019.


